Towards Cognitive AI Systems: a Survey and Prospective on Neuro-Symbolic
AI
- URL: http://arxiv.org/abs/2401.01040v1
- Date: Tue, 2 Jan 2024 05:00:54 GMT
- Title: Towards Cognitive AI Systems: a Survey and Prospective on Neuro-Symbolic
AI
- Authors: Zishen Wan, Che-Kai Liu, Hanchen Yang, Chaojian Li, Haoran You,
Yonggan Fu, Cheng Wan, Tushar Krishna, Yingyan Lin, Arijit Raychowdhury
- Abstract summary: Neuro-symbolic AI emerges as a promising paradigm to enhance interpretability, robustness, and trustworthiness.
Recent NSAI systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities.
- Score: 33.0761784111292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The remarkable advancements in artificial intelligence (AI), primarily driven
by deep neural networks, have significantly impacted various aspects of our
lives. However, the current challenges surrounding unsustainable computational
trajectories, limited robustness, and a lack of explainability call for the
development of next-generation AI systems. Neuro-symbolic AI (NSAI) emerges as
a promising paradigm, fusing neural, symbolic, and probabilistic approaches to
enhance interpretability, robustness, and trustworthiness while facilitating
learning from much less data. Recent NSAI systems have demonstrated great
potential in collaborative human-AI scenarios with reasoning and cognitive
capabilities. In this paper, we provide a systematic review of recent progress
in NSAI and analyze the performance characteristics and computational operators
of NSAI models. Furthermore, we discuss the challenges and potential future
directions of NSAI from both system and architectural perspectives.
Related papers
- Towards Efficient Neuro-Symbolic AI: From Workload Characterization to Hardware Architecture [22.274696991107206]
Neuro-symbolic AI emerges as a promising paradigm, fusing neural and symbolic approaches to enhance interpretability, robustness, and trustworthiness.
Recent neuro-symbolic systems have demonstrated great potential in collaborative human-AI scenarios with reasoning and cognitive capabilities.
We first systematically categorize neuro-symbolic AI algorithms, and then experimentally evaluate and analyze them in terms of runtime, memory, computational operators, sparsity, and system characteristics.
arXiv Detail & Related papers (2024-09-20T01:32:14Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
We propose a biologically-informed framework for enhancing artificial neural networks (ANNs)
Our proposed dual-framework approach highlights the potential of spiking neural networks (SNNs) for emulating diverse spiking behaviors.
We outline how the proposed approach integrates brain-inspired compartmental models and task-driven SNNs, bioinspiration and complexity.
arXiv Detail & Related papers (2024-07-05T14:11:28Z) - A Synergistic Approach In Network Intrusion Detection By Neurosymbolic AI [6.315966022962632]
This paper explores the potential of incorporating Neurosymbolic Artificial Intelligence (NSAI) into Network Intrusion Detection Systems (NIDS)
NSAI combines deep learning's data-driven strengths with symbolic AI's logical reasoning to tackle the dynamic challenges in cybersecurity.
The inclusion of NSAI in NIDS marks potential advancements in both the detection and interpretation of intricate network threats.
arXiv Detail & Related papers (2024-06-03T02:24:01Z) - Augmenting deep neural networks with symbolic knowledge: Towards
trustworthy and interpretable AI for education [3.627954884906034]
This research argues that the neural-symbolic family of AI has the potential to address the named challenges.
It adapts a neural-symbolic AI framework and accordingly develops an approach called NSAI, that injects and extracts educational knowledge into and from deep neural networks.
Our findings reveal that the NSAI approach has better generalizability compared to deep neural networks trained merely on training data.
arXiv Detail & Related papers (2023-11-01T09:38:56Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
Neural-symbolic computing (NeSy) has been an active research area of Artificial Intelligence (AI) for many years.
NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks.
arXiv Detail & Related papers (2022-10-28T04:38:10Z) - Vision Paper: Causal Inference for Interpretable and Robust Machine
Learning in Mobility Analysis [71.2468615993246]
Building intelligent transportation systems requires an intricate combination of artificial intelligence and mobility analysis.
The past few years have seen rapid development in transportation applications using advanced deep neural networks.
This vision paper emphasizes research challenges in deep learning-based mobility analysis that require interpretability and robustness.
arXiv Detail & Related papers (2022-10-18T17:28:58Z) - Neurocompositional computing: From the Central Paradox of Cognition to a
new generation of AI systems [120.297940190903]
Recent progress in AI has resulted from the use of limited forms of neurocompositional computing.
New, deeper forms of neurocompositional computing create AI systems that are more robust, accurate, and comprehensible.
arXiv Detail & Related papers (2022-05-02T18:00:10Z) - A brain basis of dynamical intelligence for AI and computational
neuroscience [0.0]
More brain-like capacities may demand new theories, models, and methods for designing artificial learning systems.
This article was inspired by our symposium on dynamical neuroscience and machine learning at the 6th Annual US/NIH BRAIN Initiative Investigators Meeting.
arXiv Detail & Related papers (2021-05-15T19:49:32Z) - Neurosymbolic AI: The 3rd Wave [1.14219428942199]
Concerns about trust, safety, interpretability and accountability of AI were raised by influential thinkers.
Many have identified the need for well-founded knowledge representation and reasoning to be integrated with deep learning.
Neural-symbolic computing has been an active area of research seeking to bring together robust learning in neural networks with reasoning and explainability.
arXiv Detail & Related papers (2020-12-10T18:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.