Distributional Refinement Network: Distributional Forecasting via Deep Learning
- URL: http://arxiv.org/abs/2406.00998v1
- Date: Mon, 3 Jun 2024 05:14:32 GMT
- Title: Distributional Refinement Network: Distributional Forecasting via Deep Learning
- Authors: Benjamin Avanzi, Eric Dong, Patrick J. Laub, Bernard Wong,
- Abstract summary: A key task in actuarial modelling involves modelling the distributional properties of losses.
We propose a Distributional Refinement Network (DRN), which combines an inherently interpretable baseline model with a flexible neural network.
DRN captures varying effects of features across all quantiles, improving predictive performance while maintaining adequate interpretability.
- Score: 0.8142555609235358
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A key task in actuarial modelling involves modelling the distributional properties of losses. Classic (distributional) regression approaches like Generalized Linear Models (GLMs; Nelder and Wedderburn, 1972) are commonly used, but challenges remain in developing models that can (i) allow covariates to flexibly impact different aspects of the conditional distribution, (ii) integrate developments in machine learning and AI to maximise the predictive power while considering (i), and, (iii) maintain a level of interpretability in the model to enhance trust in the model and its outputs, which is often compromised in efforts pursuing (i) and (ii). We tackle this problem by proposing a Distributional Refinement Network (DRN), which combines an inherently interpretable baseline model (such as GLMs) with a flexible neural network-a modified Deep Distribution Regression (DDR; Li et al., 2019) method. Inspired by the Combined Actuarial Neural Network (CANN; Schelldorfer and W{\''u}thrich, 2019), our approach flexibly refines the entire baseline distribution. As a result, the DRN captures varying effects of features across all quantiles, improving predictive performance while maintaining adequate interpretability. Using both synthetic and real-world data, we demonstrate the DRN's superior distributional forecasting capacity. The DRN has the potential to be a powerful distributional regression model in actuarial science and beyond.
Related papers
- A Dynamic Approach to Stock Price Prediction: Comparing RNN and Mixture of Experts Models Across Different Volatility Profiles [0.0]
The MoE framework combines an RNN for volatile stocks and a linear model for stable stocks, dynamically adjusting the weight of each model through a gating network.
Results indicate that the MoE approach significantly improves predictive accuracy across different volatility profiles.
The MoE model's adaptability allows it to outperform each individual model, reducing errors such as Mean Squared Error (MSE) and Mean Absolute Error (MAE)
arXiv Detail & Related papers (2024-10-04T14:36:21Z) - Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space [72.52365911990935]
We introduce Bellman Diffusion, a novel DGM framework that maintains linearity in MDPs through gradient and scalar field modeling.
Our results show that Bellman Diffusion achieves accurate field estimations and is a capable image generator, converging 1.5x faster than the traditional histogram-based baseline in distributional RL tasks.
arXiv Detail & Related papers (2024-10-02T17:53:23Z) - How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression [2.9873759776815527]
We propose a framework for distributional regression using inverse flow transformations (DRIFT)
DRIFT covers both interpretable statistical models and flexible neural networks opening up new avenues in both statistical modeling and deep learning.
arXiv Detail & Related papers (2024-05-08T21:19:18Z) - Out of the Ordinary: Spectrally Adapting Regression for Covariate Shift [12.770658031721435]
We propose a method for adapting the weights of the last layer of a pre-trained neural regression model to perform better on input data originating from a different distribution.
We demonstrate how this lightweight spectral adaptation procedure can improve out-of-distribution performance for synthetic and real-world datasets.
arXiv Detail & Related papers (2023-12-29T04:15:58Z) - Modeling Uncertain Feature Representation for Domain Generalization [49.129544670700525]
We show that our method consistently improves the network generalization ability on multiple vision tasks.
Our methods are simple yet effective and can be readily integrated into networks without additional trainable parameters or loss constraints.
arXiv Detail & Related papers (2023-01-16T14:25:02Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Regularized Sequential Latent Variable Models with Adversarial Neural
Networks [33.74611654607262]
We will present different ways of using high level latent random variables in RNN to model the variability in the sequential data.
We will explore possible ways of using adversarial method to train a variational RNN model.
arXiv Detail & Related papers (2021-08-10T08:05:14Z) - Predicting Deep Neural Network Generalization with Perturbation Response
Curves [58.8755389068888]
We propose a new framework for evaluating the generalization capabilities of trained networks.
Specifically, we introduce two new measures for accurately predicting generalization gaps.
We attain better predictive scores than the current state-of-the-art measures on a majority of tasks in the Predicting Generalization in Deep Learning (PGDL) NeurIPS 2020 competition.
arXiv Detail & Related papers (2021-06-09T01:37:36Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
We propose a novel learning framework for inference and estimation problems of diffusion on networks.
Our framework is derived from the Mori-Zwanzig formalism to obtain an exact evolution of the node infection probabilities.
Our approach is versatile and robust to variations of the underlying diffusion network models.
arXiv Detail & Related papers (2020-06-16T18:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.