Attention-based Iterative Decomposition for Tensor Product Representation
- URL: http://arxiv.org/abs/2406.01012v1
- Date: Mon, 3 Jun 2024 05:46:52 GMT
- Title: Attention-based Iterative Decomposition for Tensor Product Representation
- Authors: Taewon Park, Inchul Choi, Minho Lee,
- Abstract summary: We propose an Attention-based Iterative Decomposition (AID) module to enhance the decomposition operations for structured representations encoded from sequential input data with Product Representation (TPR)
Our AID can be easily adapted to any TPR-based model and provides enhanced systematic decomposition through a competitive attention mechanism between input features and structured representations.
In our experiments, AID shows effectiveness by significantly improving the performance of TPR-based prior works on the series of systematic generalization tasks.
- Score: 4.799269473206375
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent research, Tensor Product Representation (TPR) is applied for the systematic generalization task of deep neural networks by learning the compositional structure of data. However, such prior works show limited performance in discovering and representing the symbolic structure from unseen test data because their decomposition to the structural representations was incomplete. In this work, we propose an Attention-based Iterative Decomposition (AID) module designed to enhance the decomposition operations for the structured representations encoded from the sequential input data with TPR. Our AID can be easily adapted to any TPR-based model and provides enhanced systematic decomposition through a competitive attention mechanism between input features and structured representations. In our experiments, AID shows effectiveness by significantly improving the performance of TPR-based prior works on the series of systematic generalization tasks. Moreover, in the quantitative and qualitative evaluations, AID produces more compositional and well-bound structural representations than other works.
Related papers
- Semantic to Structure: Learning Structural Representations for Infringement Detection [26.57958479362817]
In this paper, we define this phenomenon as "structural infringement" and propose a corresponding detection method.
We propose a new data synthesis strategy based on diffusion models and LLM, successfully training a structural infringement detection model.
Experimental results show that our method can successfully detect structural infringements and achieve notable improvements on annotated test sets.
arXiv Detail & Related papers (2025-02-11T07:42:44Z) - Effective Reinforcement Learning Based on Structural Information Principles [19.82391136775341]
We propose a novel and general Structural Information principles-based framework for effective Decision-Making, namely SIDM.
SIDM can be flexibly incorporated into various single-agent and multi-agent RL algorithms, enhancing their performance.
arXiv Detail & Related papers (2024-04-15T13:02:00Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
Recent advances in machine learning have significantly impacted the field of information extraction.
We reformulate the task to be entity-centric, enabling the use of diverse metrics.
We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP metric.
arXiv Detail & Related papers (2024-02-06T22:15:09Z) - Structure-CLIP: Towards Scene Graph Knowledge to Enhance Multi-modal
Structured Representations [70.41385310930846]
We present an end-to-end framework Structure-CLIP to enhance multi-modal structured representations.
We use scene graphs to guide the construction of semantic negative examples, which results in an increased emphasis on learning structured representations.
A Knowledge-Enhance (KEE) is proposed to leverage SGK as input to further enhance structured representations.
arXiv Detail & Related papers (2023-05-06T03:57:05Z) - Hierarchical State Abstraction Based on Structural Information
Principles [70.24495170921075]
We propose a novel mathematical Structural Information principles-based State Abstraction framework, namely SISA, from the information-theoretic perspective.
SISA is a general framework that can be flexibly integrated with different representation-learning objectives to improve their performances further.
arXiv Detail & Related papers (2023-04-24T11:06:52Z) - Feature construction using explanations of individual predictions [0.0]
We propose a novel approach for reducing the search space based on aggregation of instance-based explanations of predictive models.
We empirically show that reducing the search to these groups significantly reduces the time of feature construction.
We show significant improvements in classification accuracy for several classifiers and demonstrate the feasibility of the proposed feature construction even for large datasets.
arXiv Detail & Related papers (2023-01-23T18:59:01Z) - Structure-Aware Feature Generation for Zero-Shot Learning [108.76968151682621]
We introduce a novel structure-aware feature generation scheme, termed as SA-GAN, to account for the topological structure in learning both the latent space and the generative networks.
Our method significantly enhances the generalization capability on unseen-classes and consequently improve the classification performance.
arXiv Detail & Related papers (2021-08-16T11:52:08Z) - DRTS Parsing with Structure-Aware Encoding and Decoding [28.711318411470497]
State-of-the-art performance can be achieved by a neural sequence-to-sequence model.
We propose a structural-aware model at both the encoder and decoder phase to integrate the structural information.
arXiv Detail & Related papers (2020-05-14T12:09:23Z) - Unsupervised Instance Segmentation in Microscopy Images via Panoptic
Domain Adaptation and Task Re-weighting [86.33696045574692]
We propose a Cycle Consistency Panoptic Domain Adaptive Mask R-CNN (CyC-PDAM) architecture for unsupervised nuclei segmentation in histopathology images.
We first propose a nuclei inpainting mechanism to remove the auxiliary generated objects in the synthesized images.
Secondly, a semantic branch with a domain discriminator is designed to achieve panoptic-level domain adaptation.
arXiv Detail & Related papers (2020-05-05T11:08:26Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
We propose a novel dependency syntactic knowledge augmented interactive architecture with multi-task learning for end-to-end ABSA.
This model is capable of fully exploiting the syntactic knowledge (dependency relations and types) by leveraging a well-designed Dependency Relation Embedded Graph Convolutional Network (DreGcn)
Extensive experimental results on three benchmark datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2020-04-04T14:59:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.