論文の概要: CYCLO: Cyclic Graph Transformer Approach to Multi-Object Relationship Modeling in Aerial Videos
- arxiv url: http://arxiv.org/abs/2406.01029v2
- Date: Mon, 07 Oct 2024 16:20:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-08 13:38:02.789271
- Title: CYCLO: Cyclic Graph Transformer Approach to Multi-Object Relationship Modeling in Aerial Videos
- Title(参考訳): CYCLO: サイクリックグラフ変換器による空中映像の多目的関係モデリング
- Authors: Trong-Thuan Nguyen, Pha Nguyen, Xin Li, Jackson Cothren, Alper Yilmaz, Khoa Luu,
- Abstract要約: 本研究では,空中ビデオにおける多目的関係モデリングに焦点を当てた新しいAeroEyeデータセットを提案する。
本稿では,Cyclic Graph Transformer (CYCLO) アプローチを提案する。
また、提案手法により、固有巡回パターンでシーケンスを処理し、オブジェクト関係を正しい順序で処理することができる。
- 参考スコア(独自算出の注目度): 9.807247838436489
- License:
- Abstract: Video scene graph generation (VidSGG) has emerged as a transformative approach to capturing and interpreting the intricate relationships among objects and their temporal dynamics in video sequences. In this paper, we introduce the new AeroEye dataset that focuses on multi-object relationship modeling in aerial videos. Our AeroEye dataset features various drone scenes and includes a visually comprehensive and precise collection of predicates that capture the intricate relationships and spatial arrangements among objects. To this end, we propose the novel Cyclic Graph Transformer (CYCLO) approach that allows the model to capture both direct and long-range temporal dependencies by continuously updating the history of interactions in a circular manner. The proposed approach also allows one to handle sequences with inherent cyclical patterns and process object relationships in the correct sequential order. Therefore, it can effectively capture periodic and overlapping relationships while minimizing information loss. The extensive experiments on the AeroEye dataset demonstrate the effectiveness of the proposed CYCLO model, demonstrating its potential to perform scene understanding on drone videos. Finally, the CYCLO method consistently achieves State-of-the-Art (SOTA) results on two in-the-wild scene graph generation benchmarks, i.e., PVSG and ASPIRe.
- Abstract(参考訳): 映像シーングラフ生成(VidSGG)は、オブジェクト間の複雑な関係とビデオシーケンスにおける時間的ダイナミクスをキャプチャし、解釈するための変換的アプローチとして登場した。
本稿では,空中ビデオにおける多目的関係モデリングに焦点を当てた新しいAeroEyeデータセットを提案する。
私たちのAeroEyeデータセットには、さまざまなドローンシーンが含まれており、オブジェクト間の複雑な関係や空間的配置をキャプチャする、視覚的に包括的で正確な述語集が含まれています。
この目的のために,循環グラフ変換器 (CYCLO) の手法を提案する。
また、提案手法により、固有巡回パターンでシーケンスを処理し、オブジェクト関係を正しい順序で処理することができる。
これにより、情報損失を最小限に抑えつつ、周期的・重複的な関係を効果的に捉えることができる。
AeroEyeデータセットに関する広範な実験は、提案されたCYCLOモデルの有効性を示し、ドローンビデオのシーン理解を行う可能性を示している。
最後に、CYCLO法は、PVSGとASPIReの2つのシーングラフ生成ベンチマークに対して、常にステート・オブ・ザ・アート(SOTA)結果を達成する。
関連論文リスト
- Multi-Scene Generalized Trajectory Global Graph Solver with Composite
Nodes for Multiple Object Tracking [61.69892497726235]
複合ノードメッセージパッシングネットワーク(CoNo-Link)は、超長いフレーム情報を関連付けるためのフレームワークである。
オブジェクトをノードとして扱う従来の方法に加えて、このネットワークは情報インタラクションのためのノードとしてオブジェクトトラジェクトリを革新的に扱う。
我々のモデルは、合成ノードを追加することで、より長い時間スケールでより良い予測を学習することができる。
論文 参考訳(メタデータ) (2023-12-14T14:00:30Z) - Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
マルチタスク学習に基づく新しいDynSGGモデルDynSGG-MTLを提案する。
長期的人間の行動は、大域的な制約に適合する複数のシーングラフを生成するためにモデルを監督し、尾の述語を学べないモデルを避ける。
論文 参考訳(メタデータ) (2023-08-10T01:24:25Z) - Exploiting Long-Term Dependencies for Generating Dynamic Scene Graphs [15.614710220461353]
動的シーングラフを効果的に生成するためには,長期的依存関係のキャプチャが鍵となることを示す。
実験の結果,動的シーングラフ検出変換器(DSG-DETR)は最先端の手法よりも優れていた。
論文 参考訳(メタデータ) (2021-12-18T03:02:11Z) - Spatial-Temporal Transformer for Dynamic Scene Graph Generation [34.190733855032065]
本研究では,(1)入力フレームを用いてフレーム内の視覚的関係を抽出する空間エンコーダと,(2)空間エンコーダの出力を入力とする時間デコーダの2つのコアモジュールからなるニューラルネットワークを提案する。
我々の方法はベンチマークデータセットAction Genome(AG)で検証されている。
論文 参考訳(メタデータ) (2021-07-26T16:30:30Z) - Visual Relationship Forecasting in Videos [56.122037294234865]
本稿では,視覚関係予測(Visual Relation Forecasting:VRF)というタスクをビデオに提示する。
Hフレームと対象オブジェクトのペアを与えられたVRFは、視覚的な証拠なしに次のTフレームに対する将来の相互作用を予測することを目的としている。
VRFタスクを評価するために,VRF-AGとVRF-VidORという2つのビデオデータセットを導入する。
論文 参考訳(メタデータ) (2021-07-02T16:43:19Z) - Spatial-Temporal Correlation and Topology Learning for Person
Re-Identification in Videos [78.45050529204701]
クロススケール空間時空間相関をモデル化し, 識別的, 堅牢な表現を追求する新しい枠組みを提案する。
CTLはCNNバックボーンとキーポイント推定器を使用して人体から意味的局所的特徴を抽出する。
グローバルな文脈情報と人体の物理的接続の両方を考慮して、多スケールグラフを構築するためのコンテキスト強化トポロジーを探求する。
論文 参考訳(メタデータ) (2021-04-15T14:32:12Z) - Unified Graph Structured Models for Video Understanding [93.72081456202672]
リレーショナル・テンポラル関係を明示的にモデル化するメッセージパッシンググラフニューラルネットワークを提案する。
本手法は,シーン内の関連エンティティ間の関係をより効果的にモデル化できることを示す。
論文 参考訳(メタデータ) (2021-03-29T14:37:35Z) - Zero-Shot Video Object Segmentation via Attentive Graph Neural Networks [150.5425122989146]
本研究は、ゼロショットビデオオブジェクトセグメンテーション(ZVOS)のための新しい注意グラフニューラルネットワーク(AGNN)を提案する。
AGNNは、フレームをノードとして効率的に表現し、任意のフレームペア間の関係をエッジとして表現するために、完全に連結されたグラフを構築している。
3つのビデオセグメンテーションデータセットの実験結果は、AGNNがそれぞれのケースに新しい最先端を設定していることを示している。
論文 参考訳(メタデータ) (2020-01-19T10:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。