FourierKAN-GCF: Fourier Kolmogorov-Arnold Network -- An Effective and Efficient Feature Transformation for Graph Collaborative Filtering
- URL: http://arxiv.org/abs/2406.01034v2
- Date: Tue, 04 Jun 2024 06:10:11 GMT
- Title: FourierKAN-GCF: Fourier Kolmogorov-Arnold Network -- An Effective and Efficient Feature Transformation for Graph Collaborative Filtering
- Authors: Jinfeng Xu, Zheyu Chen, Jinze Li, Shuo Yang, Wei Wang, Xiping Hu, Edith C. -H. Ngai,
- Abstract summary: We propose a simple and effective graph-based recommendation model called FourierKAN-GCF.
We employ message dropout and node dropout strategies to improve the representation power and robustness of the model.
- Score: 16.894095429454598
- License:
- Abstract: Graph Collaborative Filtering (GCF) has achieved state-of-the-art performance for recommendation tasks. However, most GCF structures simplify the feature transformation and nonlinear operation during message passing in the graph convolution network (GCN). We revisit these two components and discover that a part of feature transformation and nonlinear operation during message passing in GCN can improve the representation of GCF, but increase the difficulty of training. In this work, we propose a simple and effective graph-based recommendation model called FourierKAN-GCF. Specifically, it utilizes a novel Fourier Kolmogorov-Arnold Network (KAN) to replace the multilayer perceptron (MLP) as a part of the feature transformation during message passing in GCN, which improves the representation power of GCF and is easy to train. We further employ message dropout and node dropout strategies to improve the representation power and robustness of the model. Extensive experiments on two public datasets demonstrate the superiority of FourierKAN-GCF over most state-of-the-art methods. The implementation code is available at https://github.com/Jinfeng-Xu/FKAN-GCF.
Related papers
- Scalable Graph Compressed Convolutions [68.85227170390864]
We propose a differentiable method that applies permutations to calibrate input graphs for Euclidean convolution.
Based on the graph calibration, we propose the Compressed Convolution Network (CoCN) for hierarchical graph representation learning.
arXiv Detail & Related papers (2024-07-26T03:14:13Z) - A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - Technical Report: The Graph Spectral Token -- Enhancing Graph Transformers with Spectral Information [0.8184895397419141]
Graph Transformers have emerged as a powerful alternative to Message-Passing Graph Neural Networks (MP-GNNs)
We propose the Graph Spectral Token, a novel approach to directly encode graph spectral information.
We benchmark the effectiveness of our approach by enhancing two existing graph transformers, GraphTrans and SubFormer.
arXiv Detail & Related papers (2024-04-08T15:24:20Z) - How Does Message Passing Improve Collaborative Filtering? [49.019075781827034]
Collaborative filtering (CF) has exhibited prominent results for recommender systems and been broadly utilized for real-world applications.
Message passing helps CF methods in a manner akin to its benefits for graph-based learning tasks in general.
We present Test-time Aggregation for CF, a test-time augmentation framework that only conducts message passing once at inference time.
arXiv Detail & Related papers (2024-03-27T18:53:04Z) - ASWT-SGNN: Adaptive Spectral Wavelet Transform-based Self-Supervised
Graph Neural Network [20.924559944655392]
This paper proposes an Adaptive Spectral Wavelet Transform-based Self-Supervised Graph Neural Network (ASWT-SGNN)
ASWT-SGNN accurately approximates the filter function in high-density spectral regions, avoiding costly eigen-decomposition.
It achieves comparable performance to state-of-the-art models in node classification tasks.
arXiv Detail & Related papers (2023-12-10T03:07:42Z) - How Powerful is Graph Convolution for Recommendation? [21.850817998277158]
Graph convolutional networks (GCNs) have recently enabled a popular class of algorithms for collaborative filtering (CF)
In this paper, we endeavor to obtain a better understanding of GCN-based CF methods via the lens of graph signal processing.
arXiv Detail & Related papers (2021-08-17T11:38:18Z) - Graph Neural Networks with Adaptive Frequency Response Filter [55.626174910206046]
We develop a graph neural network framework AdaGNN with a well-smooth adaptive frequency response filter.
We empirically validate the effectiveness of the proposed framework on various benchmark datasets.
arXiv Detail & Related papers (2021-04-26T19:31:21Z) - RGCF: Refined Graph Convolution Collaborative Filtering with concise and
expressive embedding [42.46797662323393]
We develop a new GCN-based Collaborative Filtering model, named Refined Graph convolution Collaborative Filtering(RGCF)
RGCF is more capable for capturing the implicit high-order connectivities inside the graph and the resultant vector representations are more expressive.
We conduct extensive experiments on three public million-size datasets, demonstrating that our RGCF significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2020-07-07T12:26:10Z) - LightGCN: Simplifying and Powering Graph Convolution Network for
Recommendation [100.76229017056181]
Graph Convolution Network (GCN) has become new state-of-the-art for collaborative filtering.
In this work, we aim to simplify the design of GCN to make it more concise and appropriate for recommendation.
We propose a new model named LightGCN, including only the most essential component in GCN -- neighborhood aggregation.
arXiv Detail & Related papers (2020-02-06T06:53:42Z) - Revisiting Graph based Collaborative Filtering: A Linear Residual Graph
Convolutional Network Approach [55.44107800525776]
Graph Convolutional Networks (GCNs) are state-of-the-art graph based representation learning models.
In this paper, we revisit GCN based Collaborative Filtering (CF) based Recommender Systems (RS)
We show that removing non-linearities would enhance recommendation performance, consistent with the theories in simple graph convolutional networks.
We propose a residual network structure that is specifically designed for CF with user-item interaction modeling.
arXiv Detail & Related papers (2020-01-28T04:41:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.