Effective Subset Selection Through The Lens of Neural Network Pruning
- URL: http://arxiv.org/abs/2406.01086v1
- Date: Mon, 3 Jun 2024 08:12:32 GMT
- Title: Effective Subset Selection Through The Lens of Neural Network Pruning
- Authors: Noga Bar, Raja Giryes,
- Abstract summary: It is important to select the data to be annotated wisely, which is known as the subset selection problem.
We investigate the relationship between subset selection and neural network pruning, which is more widely studied.
We propose utilizing the norm criterion of neural network features to improve subset selection methods.
- Score: 31.43307762723943
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Having large amounts of annotated data significantly impacts the effectiveness of deep neural networks. However, the annotation task can be very expensive in some domains, such as medical data. Thus, it is important to select the data to be annotated wisely, which is known as the subset selection problem. We investigate the relationship between subset selection and neural network pruning, which is more widely studied, and establish a correspondence between them. Leveraging insights from network pruning, we propose utilizing the norm criterion of neural network features to improve subset selection methods. We empirically validate our proposed strategy on various networks and datasets, demonstrating enhanced accuracy. This shows the potential of employing pruning tools for subset selection.
Related papers
- Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - Enhancing Neural Subset Selection: Integrating Background Information into Set Representations [53.15923939406772]
We show that when the target value is conditioned on both the input set and subset, it is essential to incorporate an textitinvariant sufficient statistic of the superset into the subset of interest.
This ensures that the output value remains invariant to permutations of the subset and its corresponding superset, enabling identification of the specific superset from which the subset originated.
arXiv Detail & Related papers (2024-02-05T16:09:35Z) - Much Easier Said Than Done: Falsifying the Causal Relevance of Linear
Decoding Methods [1.3999481573773074]
Linear classifier probes identify highly selective units as the most important for network function.
In spite of the absence of ablation effects for selective neurons, linear decoding methods can be effectively used to interpret network function.
More specifically, we find that an interaction between selectivity and the average activity of the unit better predicts ablation performance deficits for groups of units in AlexNet, VGG16, MobileNetV2, and ResNet101.
arXiv Detail & Related papers (2022-11-08T16:43:02Z) - Dive into Layers: Neural Network Capacity Bounding using Algebraic
Geometry [55.57953219617467]
We show that the learnability of a neural network is directly related to its size.
We use Betti numbers to measure the topological geometric complexity of input data and the neural network.
We perform the experiments on a real-world dataset MNIST and the results verify our analysis and conclusion.
arXiv Detail & Related papers (2021-09-03T11:45:51Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - The Yin-Yang dataset [0.0]
Yin-Yang dataset was developed for research on biologically plausible error backpropagation and deep learning in spiking neural networks.
It serves as an alternative to classic deep learning datasets, by providing several advantages.
arXiv Detail & Related papers (2021-02-16T15:18:05Z) - Consistent Feature Selection for Analytic Deep Neural Networks [3.42658286826597]
We investigate the problem of feature selection for analytic deep networks.
We prove that for a wide class of networks, the Adaptive Group Lasso selection procedure with Group Lasso is selection-consistent.
The work provides further evidence that Group Lasso might be inefficient for feature selection with neural networks.
arXiv Detail & Related papers (2020-10-16T01:59:53Z) - Learning Connectivity of Neural Networks from a Topological Perspective [80.35103711638548]
We propose a topological perspective to represent a network into a complete graph for analysis.
By assigning learnable parameters to the edges which reflect the magnitude of connections, the learning process can be performed in a differentiable manner.
This learning process is compatible with existing networks and owns adaptability to larger search spaces and different tasks.
arXiv Detail & Related papers (2020-08-19T04:53:31Z) - Consistent feature selection for neural networks via Adaptive Group
Lasso [3.42658286826597]
We propose and establish a theoretical guarantee for the use of the adaptive group for selecting important features of neural networks.
Specifically, we show that our feature selection method is consistent for single-output feed-forward neural networks with one hidden layer and hyperbolic tangent activation function.
arXiv Detail & Related papers (2020-05-30T18:50:56Z) - Beyond Dropout: Feature Map Distortion to Regularize Deep Neural
Networks [107.77595511218429]
In this paper, we investigate the empirical Rademacher complexity related to intermediate layers of deep neural networks.
We propose a feature distortion method (Disout) for addressing the aforementioned problem.
The superiority of the proposed feature map distortion for producing deep neural network with higher testing performance is analyzed and demonstrated.
arXiv Detail & Related papers (2020-02-23T13:59:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.