Cohort Squeeze: Beyond a Single Communication Round per Cohort in Cross-Device Federated Learning
- URL: http://arxiv.org/abs/2406.01115v1
- Date: Mon, 3 Jun 2024 08:48:49 GMT
- Title: Cohort Squeeze: Beyond a Single Communication Round per Cohort in Cross-Device Federated Learning
- Authors: Kai Yi, Timur Kharisov, Igor Sokolov, Peter Richtárik,
- Abstract summary: We investigate whether it is possible to squeeze more juice" out of each cohort than what is possible in a single communication round.
Our approach leads to up to 74% reduction in the total communication cost needed to train a FL model in the cross-device setting.
- Score: 51.560590617691005
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Virtually all federated learning (FL) methods, including FedAvg, operate in the following manner: i) an orchestrating server sends the current model parameters to a cohort of clients selected via certain rule, ii) these clients then independently perform a local training procedure (e.g., via SGD or Adam) using their own training data, and iii) the resulting models are shipped to the server for aggregation. This process is repeated until a model of suitable quality is found. A notable feature of these methods is that each cohort is involved in a single communication round with the server only. In this work we challenge this algorithmic design primitive and investigate whether it is possible to ``squeeze more juice" out of each cohort than what is possible in a single communication round. Surprisingly, we find that this is indeed the case, and our approach leads to up to 74% reduction in the total communication cost needed to train a FL model in the cross-device setting. Our method is based on a novel variant of the stochastic proximal point method (SPPM-AS) which supports a large collection of client sampling procedures some of which lead to further gains when compared to classical client selection approaches.
Related papers
- LEFL: Low Entropy Client Sampling in Federated Learning [6.436397118145477]
Federated learning (FL) is a machine learning paradigm where multiple clients collaborate to optimize a single global model using their private data.
We propose LEFL, an alternative sampling strategy by performing a one-time clustering of clients based on their model's learned high-level features.
We show of sampled clients selected with this approach yield a low relative entropy with respect to the global data distribution.
arXiv Detail & Related papers (2023-12-29T01:44:20Z) - FedSampling: A Better Sampling Strategy for Federated Learning [81.85411484302952]
Federated learning (FL) is an important technique for learning models from decentralized data in a privacy-preserving way.
Existing FL methods usually uniformly sample clients for local model learning in each round.
We propose a novel data uniform sampling strategy for federated learning (FedSampling)
arXiv Detail & Related papers (2023-06-25T13:38:51Z) - SalientGrads: Sparse Models for Communication Efficient and Data Aware
Distributed Federated Training [1.0413504599164103]
Federated learning (FL) enables the training of a model leveraging decentralized data in client sites while preserving privacy by not collecting data.
One of the significant challenges of FL is limited computation and low communication bandwidth in resource limited edge client nodes.
We propose Salient Grads, which simplifies the process of sparse training by choosing a data aware subnetwork before training.
arXiv Detail & Related papers (2023-04-15T06:46:37Z) - Federated Learning with Regularized Client Participation [1.433758865948252]
Federated Learning (FL) is a distributed machine learning approach where multiple clients work together to solve a machine learning task.
One of the key challenges in FL is the issue of partial participation, which occurs when a large number of clients are involved in the training process.
We propose a new technique and design a novel regularized client participation scheme.
arXiv Detail & Related papers (2023-02-07T18:26:07Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning systems.
We propose SmartFL, a generic approach that optimize the server-side aggregation process.
We provide theoretical analyses of the convergence and generalization capacity for SmartFL.
arXiv Detail & Related papers (2022-11-10T13:20:56Z) - Fed-CBS: A Heterogeneity-Aware Client Sampling Mechanism for Federated
Learning via Class-Imbalance Reduction [76.26710990597498]
We show that the class-imbalance of the grouped data from randomly selected clients can lead to significant performance degradation.
Based on our key observation, we design an efficient client sampling mechanism, i.e., Federated Class-balanced Sampling (Fed-CBS)
In particular, we propose a measure of class-imbalance and then employ homomorphic encryption to derive this measure in a privacy-preserving way.
arXiv Detail & Related papers (2022-09-30T05:42:56Z) - One-shot Federated Learning without Server-side Training [42.59845771101823]
One-shot federated learning is gaining popularity as a way to reduce communication cost between clients and the server.
Most of the existing one-shot FL methods are based on Knowledge Distillation; however, distillation based approach requires an extra training phase and depends on publicly available data sets or generated pseudo samples.
In this work, we consider a novel and challenging cross-silo setting: performing a single round of parameter aggregation on the local models without server-side training.
arXiv Detail & Related papers (2022-04-26T01:45:37Z) - An Expectation-Maximization Perspective on Federated Learning [75.67515842938299]
Federated learning describes the distributed training of models across multiple clients while keeping the data private on-device.
In this work, we view the server-orchestrated federated learning process as a hierarchical latent variable model where the server provides the parameters of a prior distribution over the client-specific model parameters.
We show that with simple Gaussian priors and a hard version of the well known Expectation-Maximization (EM) algorithm, learning in such a model corresponds to FedAvg, the most popular algorithm for the federated learning setting.
arXiv Detail & Related papers (2021-11-19T12:58:59Z) - Clustered Sampling: Low-Variance and Improved Representativity for
Clients Selection in Federated Learning [4.530678016396477]
This work addresses the problem of optimizing communications between server and clients in federated learning (FL)
Current sampling approaches in FL are either biased, or non optimal in terms of server-clients communications and training stability.
We prove that clustered sampling leads to better clients representatitivity and to reduced variance of the clients aggregation weights in FL.
arXiv Detail & Related papers (2021-05-12T18:19:20Z) - A Bayesian Federated Learning Framework with Online Laplace
Approximation [144.7345013348257]
Federated learning allows multiple clients to collaboratively learn a globally shared model.
We propose a novel FL framework that uses online Laplace approximation to approximate posteriors on both the client and server side.
We achieve state-of-the-art results on several benchmarks, clearly demonstrating the advantages of the proposed method.
arXiv Detail & Related papers (2021-02-03T08:36:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.