論文の概要: Towards Practical Single-shot Motion Synthesis
- arxiv url: http://arxiv.org/abs/2406.01136v2
- Date: Tue, 4 Jun 2024 09:02:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 01:38:29.417747
- Title: Towards Practical Single-shot Motion Synthesis
- Title(参考訳): 単発モーション合成の実用化に向けて
- Authors: Konstantinos Roditakis, Spyridon Thermos, Nikolaos Zioulis,
- Abstract要約: 我々は単発モーション生成に焦点を当て、より具体的にはGAN(Generative Adversarial Network)のトレーニング時間を短縮することに焦点を当てる。
特に,ミニバッチトレーニングにおけるGANの平衡崩壊の課題に対処する。
改良されたGANは、元のGANアーキテクチャと比較して、Mixamoベンチマークの競合品質と多様性を実現する。
- 参考スコア(独自算出の注目度): 5.988300351904956
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Despite the recent advances in the so-called "cold start" generation from text prompts, their needs in data and computing resources, as well as the ambiguities around intellectual property and privacy concerns pose certain counterarguments for their utility. An interesting and relatively unexplored alternative has been the introduction of unconditional synthesis from a single sample, which has led to interesting generative applications. In this paper we focus on single-shot motion generation and more specifically on accelerating the training time of a Generative Adversarial Network (GAN). In particular, we tackle the challenge of GAN's equilibrium collapse when using mini-batch training by carefully annealing the weights of the loss functions that prevent mode collapse. Additionally, we perform statistical analysis in the generator and discriminator models to identify correlations between training stages and enable transfer learning. Our improved GAN achieves competitive quality and diversity on the Mixamo benchmark when compared to the original GAN architecture and a single-shot diffusion model, while being up to x6.8 faster in training time from the former and x1.75 from the latter. Finally, we demonstrate the ability of our improved GAN to mix and compose motion with a single forward pass. Project page available at https://moverseai.github.io/single-shot.
- Abstract(参考訳): テキストプロンプトによるいわゆる「コールドスタート」生成の最近の進歩にもかかわらず、データやコンピューティングリソースへのニーズに加えて、知的財産権やプライバシーに関する曖昧さは、その実用性に対してある種の反論をもたらす。
興味深く、比較的探索されていない別の選択肢は、単一のサンプルから無条件合成を導入することであり、興味深い生成的応用をもたらした。
本稿では,単発モーション生成に着目し,より具体的にはGAN(Generative Adversarial Network)のトレーニング時間の短縮に着目する。
特に,モード崩壊を防止する損失関数の重みを慎重に熱処理することにより,ミニバッチトレーニングを行う場合のGANの平衡崩壊の課題に対処する。
さらに, 生成器と識別器モデルを用いて統計的解析を行い, 学習段階間の相関関係を同定し, 伝達学習を可能にする。
改良されたGANは、元のGANアーキテクチャと単発拡散モデルと比較すると、Mixamoベンチマークの競合品質と多様性を実現します。
最後に、改良されたGANが1つの前方パスで動きを混合して構成できることを実証する。
プロジェクトページはhttps://moverseai.github.io/single-shot.comで公開されている。
関連論文リスト
- Parallelly Tempered Generative Adversarial Networks [7.94957965474334]
生成的敵対ネットワーク(GAN)は、生成的人工知能(AI)における代表的バックボーンモデルである。
本研究は,モード崩壊の存在下でのトレーニングの不安定性と非効率性を,対象分布におけるマルチモーダルにリンクすることで解析する。
新たに開発したGAN目標関数により, 生成元は同時に全ての誘電分布を学習することができる。
論文 参考訳(メタデータ) (2024-11-18T18:01:13Z) - Diffusing States and Matching Scores: A New Framework for Imitation Learning [16.941612670582522]
敵対的模倣学習は伝統的に、学習者と敵対的に選択されたコスト関数の間の2つのプレイヤーゼロサムゲームとしてフレーム化されている。
近年、拡散モデルはGANの非敵対的な代替品として出現している。
提案手法は, 様々な連続制御問題に対して, GANスタイルの模倣学習ベースラインより優れていることを示す。
論文 参考訳(メタデータ) (2024-10-17T17:59:25Z) - Time-series Generation by Contrastive Imitation [87.51882102248395]
モーメントマッチングの目的によってモチベーションされ、複合的エラーを軽減し、局所的(しかし前方的な)遷移ポリシーを最適化する。
推論において、学習されたポリシーは反復的なサンプリングのジェネレータとして機能し、学習されたエネルギーはサンプルの品質を評価するための軌道レベル尺度として機能する。
論文 参考訳(メタデータ) (2023-11-02T16:45:25Z) - Accurate generation of stochastic dynamics based on multi-model
Generative Adversarial Networks [0.0]
GAN(Generative Adversarial Networks)は、テキストや画像生成などの分野において大きな可能性を秘めている。
ここでは、格子上の原型過程に適用することにより、このアプローチを定量的に検証する。
重要なことに、ノイズにもかかわらずモデルの離散性は維持される。
論文 参考訳(メタデータ) (2023-05-25T10:41:02Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Deceive D: Adaptive Pseudo Augmentation for GAN Training with Limited
Data [125.7135706352493]
GAN(Generative Adversarial Network)は、高忠実度画像を合成するために、訓練に十分なデータを必要とする。
近年の研究では、差別者の過度な適合により、限られたデータでGANを訓練することは困難であることが示されている。
本稿では,APA (Adaptive Pseudo Augmentation) と呼ばれる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-11-12T18:13:45Z) - Self-Damaging Contrastive Learning [92.34124578823977]
ラベルのないデータは一般に不均衡であり、長い尾の分布を示す。
本稿では,クラスを知らずに表現学習を自動的にバランスをとるための,自己学習コントラスト学習という原則的枠組みを提案する。
実験の結果,SDCLRは全体としての精度だけでなく,バランス性も著しく向上することがわかった。
論文 参考訳(メタデータ) (2021-06-06T00:04:49Z) - On the Reproducibility of Neural Network Predictions [52.47827424679645]
そこで本研究では, チャーン問題について検討し, 原因因子を同定し, 緩和する2つの簡単な方法を提案する。
最初に、標準的な画像分類タスクであっても、チャーンが問題であることを示す。
我々は,予測信頼度を高めるために,エントロピー正規化器を提案する。
両手法の有効性を実証的に示し, 基礎モデルの精度を向上しながら, チャーン低減効果を示す。
論文 参考訳(メタデータ) (2021-02-05T18:51:01Z) - Imbalanced Data Learning by Minority Class Augmentation using Capsule
Adversarial Networks [31.073558420480964]
本稿では,2つの同時手法を合体させて,不均衡な画像のバランスを回復する手法を提案する。
我々のモデルでは、生成的および識別的ネットワークは、新しい競争力のあるゲームをする。
カプセルGANの合体は、畳み込みGANと比較して非常に少ないパラメータで重なり合うクラスを認識するのに効果的である。
論文 参考訳(メタデータ) (2020-04-05T12:36:06Z) - Feature Quantization Improves GAN Training [126.02828112121874]
識別器の特徴量子化(FQ)は、真と偽のデータの両方を共有離散空間に埋め込む。
本手法は,既存のGANモデルに容易に接続でき,訓練における計算オーバーヘッドがほとんどない。
論文 参考訳(メタデータ) (2020-04-05T04:06:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。