Quantum consistent neural/tensor networks for photonic circuits with strongly/weakly entangled states
- URL: http://arxiv.org/abs/2406.01157v1
- Date: Mon, 3 Jun 2024 09:51:25 GMT
- Title: Quantum consistent neural/tensor networks for photonic circuits with strongly/weakly entangled states
- Authors: Nicolas Allegra,
- Abstract summary: We propose an approach to approximate the exact unitary evolution of closed entangled systems in a precise, efficient and quantum consistent manner.
By training the networks with a reasonably small number of examples of quantum dynamics, we enable efficient parameter estimation in larger Hilbert spaces.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern quantum optical systems such as photonic quantum computers and quantum imaging devices require great precision in their designs and implementations in the hope to realistically exploit entanglement and reach a real quantum advantage. The theoretical and experimental explorations and validations of these systems are greatly dependent on the precision of our classical simulations. However, as Hilbert spaces increases, traditional computational methods used to design and optimize these systems encounter hard limitations due to the quantum curse of dimensionally. To address this challenge, we propose an approach based on neural and tensor networks to approximate the exact unitary evolution of closed entangled systems in a precise, efficient and quantum consistent manner. By training the networks with a reasonably small number of examples of quantum dynamics, we enable efficient parameter estimation in larger Hilbert spaces, offering an interesting solution for a great deal of quantum metrology problems.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Quantum Equilibrium Propagation for efficient training of quantum systems based on Onsager reciprocity [0.0]
Equilibrium propagation (EP) is a procedure that has been introduced and applied to classical energy-based models which relax to an equilibrium.
Here, we show a direct connection between EP and Onsager reciprocity and exploit this to derive a quantum version of EP.
This can be used to optimize loss functions that depend on the expectation values of observables of an arbitrary quantum system.
arXiv Detail & Related papers (2024-06-10T17:22:09Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Learning Quantum Systems [0.0]
Quantum technologies hold the promise to revolutionise our society with ground-breaking applications in secure communication, high-performance computing and ultra-precise sensing.
One of the main features in scaling up quantum technologies is that the complexity of quantum systems scales exponentially with their size.
This poses severe challenges in the efficient calibration, benchmarking and validation of quantum states and their dynamical control.
arXiv Detail & Related papers (2022-07-01T09:47:26Z) - Quantum Neural Architecture Search with Quantum Circuits Metric and
Bayesian Optimization [2.20200533591633]
We propose a new quantum gates distance that characterizes the gates' action over every quantum state.
Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems.
arXiv Detail & Related papers (2022-06-28T16:23:24Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - A proposal for practical multidimensional quantum networks [0.0]
High-dimensional quantum systems (qudits) present higher photon information efficiency and robustness to noise.
Their use in quantum networks present experimental challenges due to the impractical resources required in high-dimensional quantum repeaters.
Our work significantly simplifies the implementation of high-dimensional quantum networks, fostering their development with current technology.
arXiv Detail & Related papers (2021-03-16T17:15:58Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Finding Quantum Critical Points with Neural-Network Quantum States [0.0]
We present an approach to finding the quantum critical points of the quantum Ising model using neural-network quantum states.
We analytically constructed innate restricted Boltzmann machines, transfer learning and unsupervised learning.
arXiv Detail & Related papers (2020-02-07T04:39:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.