Conditional Gumbel-Softmax for constrained feature selection with application to node selection in wireless sensor networks
- URL: http://arxiv.org/abs/2406.01162v1
- Date: Mon, 3 Jun 2024 09:55:56 GMT
- Title: Conditional Gumbel-Softmax for constrained feature selection with application to node selection in wireless sensor networks
- Authors: Thomas Strypsteen, Alexander Bertrand,
- Abstract summary: We introduce Conditional Gumbel-Softmax as a method to perform end-to-end learning of the optimal subset for a given task.
We demonstrate how this approach can be used to select the task-optimal nodes composing a wireless sensor network.
- Score: 48.536059764418454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we introduce Conditional Gumbel-Softmax as a method to perform end-to-end learning of the optimal feature subset for a given task and deep neural network (DNN) model, while adhering to certain pairwise constraints between the features. We do this by conditioning the selection of each feature in the subset on another feature. We demonstrate how this approach can be used to select the task-optimal nodes composing a wireless sensor network (WSN) while ensuring that none of the nodes that require communication between one another have too large of a distance between them, limiting the required power spent on this communication. We validate this approach on an emulated Wireless Electroencephalography (EEG) Sensor Network (WESN) solving a motor execution task. We analyze how the performance of the WESN varies as the constraints are made more stringent and how well the Conditional Gumbel-Softmax performs in comparison with a heuristic, greedy selection method. While the application focus of this paper is on wearable brain-computer interfaces, the proposed methodology is generic and can readily be applied to node deployment in wireless sensor networks and constrained feature selection in other applications as well.
Related papers
- Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
Sparse Neural Networks (SNNs) have emerged as powerful tools for efficient feature selection.
We show that SNNs trained with dynamic sparse training (DST) algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
Our findings show that feature selection with SNNs trained with DST algorithms can achieve, on average, more than $50%$ memory and $55%$ FLOPs reduction.
arXiv Detail & Related papers (2024-08-08T16:48:33Z) - Sensor Selection via GFlowNets: A Deep Generative Modeling Framework to Navigate Combinatorial Complexity [3.255315368019651]
This work addresses the challenge of selecting $k$ sensor elements from a set of $m$ to optimize a generic Quality-of-Service metric.
evaluating all $binommk$ possible sensor subsets is impractical, leading to prior solutions using convex relaxations, greedy algorithms, and supervised learning approaches.
arXiv Detail & Related papers (2024-07-29T06:56:57Z) - Reinforcement Learning for Node Selection in Branch-and-Bound [52.2648997215667]
Current state-of-the-art selectors utilize either hand-crafted ensembles that automatically switch between naive sub-node selectors, or learned node selectors that rely on individual node data.
We propose a novel simulation technique that uses reinforcement learning (RL) while considering the entire tree state, rather than just isolated nodes.
arXiv Detail & Related papers (2023-09-29T19:55:56Z) - A distributed neural network architecture for dynamic sensor selection
with application to bandwidth-constrained body-sensor networks [53.022158485867536]
We propose a dynamic sensor selection approach for deep neural networks (DNNs)
It is able to derive an optimal sensor subset selection for each specific input sample instead of a fixed selection for the entire dataset.
We show how we can use this dynamic selection to increase the lifetime of a wireless sensor network (WSN) by imposing constraints on how often each node is allowed to transmit.
arXiv Detail & Related papers (2023-08-16T14:04:50Z) - Graph Neural Networks-Based User Pairing in Wireless Communication
Systems [0.34410212782758043]
We propose an unsupervised graph neural network (GNN) approach to efficiently solve the user pairing problem.
At 20 dB SNR, our proposed approach achieves a 49% better sum rate than k-means and a staggering 95% better sum rate than SUS.
arXiv Detail & Related papers (2023-05-14T11:57:42Z) - Graph Neural Networks for Power Allocation in Wireless Networks with
Full Duplex Nodes [10.150768420975155]
Due to mutual interference between users, power allocation problems in wireless networks are often non-trivial.
Graph Graph neural networks (GNNs) have recently emerged as a promising approach tackling these problems and an approach exploits underlying topology of wireless networks.
arXiv Detail & Related papers (2023-03-27T10:59:09Z) - Bandwidth-efficient distributed neural network architectures with
application to body sensor networks [73.02174868813475]
This paper describes a conceptual design methodology to design distributed neural network architectures.
We show that the proposed framework enables up to a factor 20 in bandwidth reduction with minimal loss.
While the application focus of this paper is on wearable brain-computer interfaces, the proposed methodology can be applied in other sensor network-like applications as well.
arXiv Detail & Related papers (2022-10-14T12:35:32Z) - Dynamic Network selection for the Object Detection task: why it matters
and what we (didn't) achieve [1.8467344387137519]
We show the potential benefit of a dynamic auto-tuning approach for the inference process in the Deep Neural Network context.
We benchmarked different neural networks to find the optimal detector for the well-known COCO 17 database.
arXiv Detail & Related papers (2021-05-27T16:25:18Z) - Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA [78.60275748518589]
Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
arXiv Detail & Related papers (2021-01-02T15:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.