Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA
- URL: http://arxiv.org/abs/2101.00464v2
- Date: Thu, 11 Mar 2021 14:44:13 GMT
- Title: Data-Driven Random Access Optimization in Multi-Cell IoT Networks with
NOMA
- Authors: Sami Khairy, Prasanna Balaprakash, Lin X. Cai, H. Vincent Poor
- Abstract summary: Non-orthogonal multiple access (NOMA) is a key technology to enable massive machine type communications (mMTC) in 5G networks and beyond.
In this paper, NOMA is applied to improve the random access efficiency in high-density spatially-distributed multi-cell wireless IoT networks.
A novel formulation of random channel access management is proposed, in which the transmission probability of each IoT device is tuned to maximize the geometric mean of users' expected capacity.
- Score: 78.60275748518589
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-orthogonal multiple access (NOMA) is a key technology to enable massive
machine type communications (mMTC) in 5G networks and beyond. In this paper,
NOMA is applied to improve the random access efficiency in high-density
spatially-distributed multi-cell wireless IoT networks, where IoT devices
contend for accessing the shared wireless channel using an adaptive
p-persistent slotted Aloha protocol. To enable a capacity-optimal network, a
novel formulation of random channel access management is proposed, in which the
transmission probability of each IoT device is tuned to maximize the geometric
mean of users' expected capacity. It is shown that the network optimization
objective is high dimensional and mathematically intractable, yet it admits
favourable mathematical properties that enable the design of efficient
data-driven algorithmic solutions which do not require a priori knowledge of
the channel model or network topology. A centralized model-based algorithm and
a scalable distributed model-free algorithm, are proposed to optimally tune the
transmission probabilities of IoT devices and attain the maximum capacity. The
convergence of the proposed algorithms to the optimal solution is further
established based on convex optimization and game-theoretic analysis. Extensive
simulations demonstrate the merits of the novel formulation and the efficacy of
the proposed algorithms.
Related papers
- High Efficiency Inference Accelerating Algorithm for NOMA-based Mobile
Edge Computing [23.88527790721402]
Splitting the inference model between device, edge server, and cloud can improve the performance of EI greatly.
NOMA, which is the key supporting technologies of B5G/6G, can achieve massive connections and high spectrum efficiency.
We propose the effective communication and computing resource allocation algorithm to accelerate the model inference at edge.
arXiv Detail & Related papers (2023-12-26T02:05:52Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Coverage and Capacity Optimization in STAR-RISs Assisted Networks: A
Machine Learning Approach [102.00221938474344]
A novel model is proposed for the coverage and capacity optimization of simultaneously transmitting and reflecting reconfigurable intelligent surfaces (STAR-RISs) assisted networks.
A loss function-based update strategy is the core point, which is able to calculate weights for both loss functions of coverage and capacity by a min-norm solver at each update.
The numerical results demonstrate that the investigated update strategy outperforms the fixed weight-based MO algorithms.
arXiv Detail & Related papers (2022-04-13T13:52:22Z) - Fast and computationally efficient generative adversarial network
algorithm for unmanned aerial vehicle-based network coverage optimization [1.2853186701496802]
The challenge of dynamic traffic demand in mobile networks is tackled by moving cells based on unmanned aerial vehicles.
Considering the tremendous potential of unmanned aerial vehicles in the future, we propose a new algorithm for coverage optimization.
The proposed algorithm is implemented based on a conditional generative adversarial neural network, with a unique multilayer sum-pooling loss function.
arXiv Detail & Related papers (2022-03-25T12:13:21Z) - Algorithm Unrolling for Massive Access via Deep Neural Network with
Theoretical Guarantee [30.86806523281873]
Massive access is a critical design challenge of Internet of Things (IoT) networks.
We consider the grant-free uplink transmission of an IoT network with a multiple-antenna base station (BS) and a large number of single-antenna IoT devices.
We propose a novel algorithm unrolling framework based on the deep neural network to simultaneously achieve low computational complexity and high robustness.
arXiv Detail & Related papers (2021-06-19T05:23:05Z) - Entanglement Rate Optimization in Heterogeneous Quantum Communication
Networks [79.8886946157912]
Quantum communication networks are emerging as a promising technology that could constitute a key building block in future communication networks in the 6G era and beyond.
Recent advances led to the deployment of small- and large-scale quantum communication networks with real quantum hardware.
In quantum networks, entanglement is a key resource that allows for data transmission between different nodes.
arXiv Detail & Related papers (2021-05-30T11:34:23Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
We study a distributed variable for large-scale AUC for a neural network as with a deep neural network.
Our model requires a much less number of communication rounds and still a number of communication rounds in theory.
Our experiments on several datasets show the effectiveness of our theory and also confirm our theory.
arXiv Detail & Related papers (2020-05-05T18:08:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.