論文の概要: Two Tales of Persona in LLMs: A Survey of Role-Playing and Personalization
- arxiv url: http://arxiv.org/abs/2406.01171v3
- Date: Sat, 05 Oct 2024 04:29:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-08 13:39:49.464155
- Title: Two Tales of Persona in LLMs: A Survey of Role-Playing and Personalization
- Title(参考訳): LLMにおける2つのペルソナ:ロールプレイングとパーソナライズに関する調査
- Authors: Yu-Min Tseng, Yu-Chao Huang, Teng-Yun Hsiao, Wei-Lin Chen, Chao-Wei Huang, Yu Meng, Yun-Nung Chen,
- Abstract要約: 対話文学で最初に採用されたペルソナの概念は、大きな言語モデルを特定の文脈に合わせるための有望な枠組みとして復活してきた。
ギャップを埋めるために、フィールドの現状を分類するための総合的な調査を提示する。
- 参考スコア(独自算出の注目度): 33.513689684998035
- License:
- Abstract: The concept of persona, originally adopted in dialogue literature, has re-surged as a promising framework for tailoring large language models (LLMs) to specific context (e.g., personalized search, LLM-as-a-judge). However, the growing research on leveraging persona in LLMs is relatively disorganized and lacks a systematic taxonomy. To close the gap, we present a comprehensive survey to categorize the current state of the field. We identify two lines of research, namely (1) LLM Role-Playing, where personas are assigned to LLMs, and (2) LLM Personalization, where LLMs take care of user personas. Additionally, we introduce existing methods for LLM personality evaluation. To the best of our knowledge, we present the first survey for role-playing and personalization in LLMs under the unified view of persona. We continuously maintain a paper collection to foster future endeavors: https://github.com/MiuLab/PersonaLLM-Survey
- Abstract(参考訳): 対話文学で最初に採用されたペルソナの概念は、大きな言語モデル(LLM)を特定の文脈(例えばパーソナライズされた検索、LSM-as-a-judge)に合わせるための有望なフレームワークとして復活してきた。
しかし、LSMにおけるペルソナの活用に関する研究は、比較的非組織化されており、体系的な分類学が欠如している。
ギャップを埋めるために、フィールドの現状を分類するための総合的な調査を提示する。
LLMロールプレイング(LLMロールプレイング)、LLMパーソナライゼーション(LLMパーソナライゼーション)、LLMパーソナライゼーション(LLMパーソナライゼーション)という2つの研究の行を識別する。
さらに,LLMの人格評価のための既存手法についても紹介する。
本稿では,LLMにおけるロールプレイングとパーソナライズに関する最初の調査について,ペルソナの統一的な視点で紹介する。
私たちは、将来の取り組みを促進するために、紙コレクションを継続的に維持しています。
関連論文リスト
- Personalization of Large Language Models: A Survey [131.00650432814268]
大規模言語モデル(LLM)のパーソナライゼーションは、最近、広範囲のアプリケーションでますます重要になっている。
パーソナライズ LLM に関する既存の研究の多くは、(a)パーソナライズされたテキスト生成、または(b)レコメンデーションシステムのようなパーソナライズに関連する下流アプリケーションに LLM を活用することに集中している。
パーソナライズされたLSM使用のための分類を導入し、主要な違いと課題を要約する。
論文 参考訳(メタデータ) (2024-10-29T04:01:11Z) - Can LLM be a Personalized Judge? [24.858529542496367]
LLM-as-a-Personalized-Judgeの信頼性を検討した。
LLM-as-a-Personalized-Judgeの直接適用は,従来想定されていたよりも信頼性が低いことが示唆された。
本研究では,LLM-as-a-Personalized-Judgeパイプラインに不確実性推定を導入し,不確実性判定に対する信頼度を低く表現する。
論文 参考訳(メタデータ) (2024-06-17T15:41:30Z) - Character is Destiny: Can Large Language Models Simulate Persona-Driven Decisions in Role-Playing? [59.0123596591807]
ペルソナ駆動意思決定における大規模言語モデルの能力のベンチマークを行う。
高品質な小説において, LLM が先行する物語の登場人物の判断を予測できるかどうかを考察する。
その結果、現状のLLMは、このタスクに有望な能力を示すが、改善の余地は十分にあることが示された。
論文 参考訳(メタデータ) (2024-04-18T12:40:59Z) - Identifying Multiple Personalities in Large Language Models with
External Evaluation [6.657168333238573]
大きな言語モデル(LLM)は、人間の日常的なアプリケーションと迅速に統合されます。
近年の多くの研究は、人間のために作られた自己評価テストを用いて、LLMの個性を定量化している。
しかし、LCMに適用した場合、これらの自己評価テストの適用性と信頼性に疑問を呈する批評家も多い。
論文 参考訳(メタデータ) (2024-02-22T18:57:20Z) - Large Language Models: A Survey [69.72787936480394]
大規模言語モデル(LLM)は、広範囲の自然言語タスクにおける強力なパフォーマンスのために、多くの注目を集めている。
LLMの汎用言語理解と生成能力は、膨大なテキストデータに基づいて数十億のモデルのパラメータを訓練することで得られる。
論文 参考訳(メタデータ) (2024-02-09T05:37:09Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
大規模言語モデル(LLM)は、素早い工学を通して、文脈内学習能力の出現を示す。
自然言語理解と質問応答におけるLLMの一般化性と事実性の向上という課題は、まだ未解決のままである。
本研究では, LLM の信頼性を高める枠組みを提案する。1) 分布外データの一般化,2) 差別モデルによる LLM のメリットの解明,3) 生成タスクにおける幻覚の最小化。
論文 参考訳(メタデータ) (2023-12-26T07:24:46Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
広範囲なテキストコーパスで訓練されたLarge Language Models (LLM) は、幅広い自然言語処理(NLP)タスクの先導的なソリューションとして登場した。
その顕著な性能にもかかわらず、これらのモデルは、人間の指示を誤解したり、偏見のあるコンテンツを生成したり、事実的に誤った情報を生成するといった、ある種の制限を受ける傾向にある。
本調査では,これらのアライメント技術の概要について概観する。
論文 参考訳(メタデータ) (2023-07-24T17:44:58Z) - In-Context Impersonation Reveals Large Language Models' Strengths and
Biases [56.61129643802483]
我々は、視覚と言語タスクを解く前に、LLMに異なるペルソナを仮定するよう依頼する。
異なる年齢の子どものふりをしたLSMが、ヒトのような発達段階を回復することがわかった。
言語に基づく推論タスクでは、ドメインエキスパートを装うLLMが、ドメイン専門家を装うLLMよりも優れた性能を発揮する。
論文 参考訳(メタデータ) (2023-05-24T09:13:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。