論文の概要: Deep Reinforcement Learning Behavioral Mode Switching Using Optimal Control Based on a Latent Space Objective
- arxiv url: http://arxiv.org/abs/2406.01178v1
- Date: Mon, 3 Jun 2024 10:21:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 01:28:45.158556
- Title: Deep Reinforcement Learning Behavioral Mode Switching Using Optimal Control Based on a Latent Space Objective
- Title(参考訳): 潜時空間オブジェクトに基づく最適制御を用いた深層強化学習行動モードスイッチング
- Authors: Sindre Benjamin Remman, Bjørn Andreas Kristiansen, Anastasios M. Lekkas,
- Abstract要約: 我々は,政策の潜伏空間で直接最適化することで,深層強化学習政策の行動を変えるために最適制御を用いる。
提案手法は,失敗エピソードをいかに成功させるかを示すことによって,望ましい行動モードをポリシーに課すことができることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we use optimal control to change the behavior of a deep reinforcement learning policy by optimizing directly in the policy's latent space. We hypothesize that distinct behavioral patterns, termed behavioral modes, can be identified within certain regions of a deep reinforcement learning policy's latent space, meaning that specific actions or strategies are preferred within these regions. We identify these behavioral modes using latent space dimension-reduction with \ac*{pacmap}. Using the actions generated by the optimal control procedure, we move the system from one behavioral mode to another. We subsequently utilize these actions as a filter for interpreting the neural network policy. The results show that this approach can impose desired behavioral modes in the policy, demonstrated by showing how a failed episode can be made successful and vice versa using the lunar lander reinforcement learning environment.
- Abstract(参考訳): 本研究では,政策の潜伏空間で直接最適化することで,深層強化学習政策の行動を変えるために最適制御を用いる。
我々は,深い強化学習政策の潜伏空間の特定の領域において,個別の行動パターン,いわゆる行動モードが識別可能であることを仮定し,これらの領域において特定の行動や戦略が好ましいことを示す。
我々は,これらの行動モードを,<ac*{pacmap} を用いた潜時空間次元推論を用いて同定する。
最適な制御手順によって生成された動作を用いて、システムを1つの行動モードから別の行動モードに移動させる。
その後、ニューラルネットワークポリシーを解釈するためのフィルタとしてこれらのアクションを利用する。
提案手法は, 失敗エピソードを成功させる方法を示すとともに, 月面着陸支援学習環境を用いて, 望ましい行動モードを付与できることが示唆された。
関連論文リスト
- Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
政策勾配法(PG法)は連続強化学習(RL法)問題に対処する手法として成功している。
一般的には、収束(ハイパー)政治は、決定論的バージョンをデプロイするためにのみ学習される。
本稿では,サンプルの複雑性とデプロイされた決定論的ポリシのパフォーマンスのトレードオフを最適化するために,学習に使用する探索レベルの調整方法を示す。
論文 参考訳(メタデータ) (2024-05-03T16:45:15Z) - Discovering Behavioral Modes in Deep Reinforcement Learning Policies
Using Trajectory Clustering in Latent Space [0.0]
本稿では,DRLポリシーの行動モードを調査するための新しいアプローチを提案する。
具体的には, Pairwise Controlled Manifold Approximation Projection (PaCMAP) を次元減少に用い, TRACLUS を軌道クラスタリングに用いた。
本手法は,多種多様な行動パターンと準最適選択をポリシーによって識別し,目標とする改善を可能にする。
論文 参考訳(メタデータ) (2024-02-20T11:50:50Z) - Language-Conditioned Semantic Search-Based Policy for Robotic
Manipulation Tasks [2.1332830068386217]
言語条件のセマンティックサーチに基づくオンラインサーチベースのポリシーを作成する手法を提案する。
提案手法は,CALVINベンチマークのベースライン性能を超越し,ゼロショット適応性能が向上する。
論文 参考訳(メタデータ) (2023-12-10T16:17:00Z) - Diverse Policy Optimization for Structured Action Space [59.361076277997704]
エネルギーベースモデル(EBM)として構造化された行動空間における政策をモデル化するための多元的政策最適化(DPO)を提案する。
新しい強力な生成モデルであるGFlowNetは、効率よく多様なEMMベースのポリシーサンプリングとして導入されている。
ATSCとBattleベンチマークの実験では、DPOが驚くほど多様なポリシーを効率的に発見できることが示されている。
論文 参考訳(メタデータ) (2023-02-23T10:48:09Z) - Let Offline RL Flow: Training Conservative Agents in the Latent Space of
Normalizing Flows [58.762959061522736]
オフライン強化学習は、追加の環境相互作用なしに、事前に記録された、固定されたデータセット上でポリシーをトレーニングすることを目的としている。
我々は、最近、潜在行動空間における学習ポリシーを基礎として、生成モデルの構築に正規化フローの特別な形式を用いる。
提案手法が最近提案したアルゴリズムより優れていることを示すため,様々な移動タスクとナビゲーションタスクについて評価を行った。
論文 参考訳(メタデータ) (2022-11-20T21:57:10Z) - Continuous MDP Homomorphisms and Homomorphic Policy Gradient [51.25171126424949]
MDP準同型の定義を拡張し、連続状態空間における連続的な作用を包含する。
本稿では,政策とMDP準同型写像を同時に学習できるアクター批判アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-15T15:26:49Z) - Direct Random Search for Fine Tuning of Deep Reinforcement Learning
Policies [5.543220407902113]
直接ランダム検索は、決定論的ロールアウトを用いて直接最適化することにより、DRLポリシーを微調整するのに非常に効果的であることを示す。
その結果, 本手法は, テストした環境において, より一貫性があり, 高性能なエージェントが得られることがわかった。
論文 参考訳(メタデータ) (2021-09-12T20:12:46Z) - Discrete Action On-Policy Learning with Action-Value Critic [72.20609919995086]
離散的な行動空間における強化学習(RL)は、実世界の応用では至るところで行われているが、その複雑さは行動空間次元とともに指数関数的に増大する。
我々は,行動値関数を推定し,相関行動に適用し,これらの評価値を組み合わせて勾配推定の分散を制御する。
これらの取り組みにより、分散制御技術に頼って、関連するRLアルゴリズムを実証的に上回る、新たな離散的なRLアルゴリズムが実現される。
論文 参考訳(メタデータ) (2020-02-10T04:23:09Z) - Reward-Conditioned Policies [100.64167842905069]
模倣学習には、ほぼ最適の専門家データが必要である。
実演なしで指導的学習を通じて効果的な政策を学べるか?
政策探索の原則的手法として,このようなアプローチを導出する方法を示す。
論文 参考訳(メタデータ) (2019-12-31T18:07:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。