Q-BiC: A biocompatible integrated chip for in vitro and in vivo spin-based quantum sensing
- URL: http://arxiv.org/abs/2406.01181v1
- Date: Mon, 3 Jun 2024 10:26:15 GMT
- Title: Q-BiC: A biocompatible integrated chip for in vitro and in vivo spin-based quantum sensing
- Authors: Louise Shanahan, Sophia Belser, Jack W. Hart, Qiushi Gu, Julien R. E. Roth, Annika Mechnich, Michael Hoegen, Soham Pal, David Jordan, Eric A. Miska, Mete Atature, Helena S. Knowles,
- Abstract summary: Optically addressable spin-based quantum sensors enable nanoscale measurements of temperature, magnetic field, pH, and other physical properties of a system.
We present the Quantum Biosensing Chip (Q-BiC), which facilitates microfluidic-compatible microwave delivery and includes on-chip temperature control.
- Score: 0.23906118847859378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optically addressable spin-based quantum sensors enable nanoscale measurements of temperature, magnetic field, pH, and other physical properties of a system. Advancing the sensors beyond proof-of-principle demonstrations in living cells and multicellular organisms towards reliable, damage-free quantum sensing poses three distinct technical challenges. First, spin-based quantum sensing requires optical accessibility and microwave delivery. Second, any microelectronics must be biocompatible and designed for imaging living specimens. Third, efficient microwave delivery and temperature control are essential to reduce unwanted heating and to maintain an optimal biological environment. Here, we present the Quantum Biosensing Chip (Q-BiC), which facilitates microfluidic-compatible microwave delivery and includes on-chip temperature control. We demonstrate the use of Q-BiC in conjunction with nanodiamonds containing nitrogen vacancy centers to perform optically detected magnetic resonance in living systems. We quantify the biocompatibility of microwave excitation required for optically detected magnetic resonance both in vitro in HeLa cells and in vivo in the nematode Caenorhabditis elegans for temperature measurements and determine the microwave-exposure range allowed before detrimental effects are observed. In addition, we show that nanoscale quantum thermometry can be performed in immobilised but non-anaesthetised adult nematodes with minimal stress. These results enable the use of spin-based quantum sensors without damaging the biological system under study, facilitating the investigation of the local thermodynamic and viscoelastic properties of intracellular processes.
Related papers
- High-precision chemical quantum sensing in flowing monodisperse microdroplets [0.5589940740013893]
We deploy nanodiamond particles hosting fluorescent nitrogen vacancy defects as quantum sensors in flowing, monodisperse, picoliter-volume microdroplets.
ND motion within these microcompartments facilitates close sensor-analyte interaction.
We introduce a new noise-suppressed mode of Optically Detected Magnetic Resonance that is sensitive to chemical analytes.
arXiv Detail & Related papers (2024-04-30T07:32:27Z) - Indirect pumping of alkali-metal gases in a miniature silicon-wafer cell [0.0]
We report on the design and realization of miniature silicon-wafer cells, with a double-chamber configuration and integrated heaters.
Results are obtained, with magnetic resonance linewidths of roughly 100 Hz at the maximum signal-to-noise ratio.
arXiv Detail & Related papers (2024-02-26T16:09:37Z) - Limits for coherent optical control of quantum emitters in layered
materials [49.596352607801784]
coherent control of a two-level system is among the most essential challenges in modern quantum optics.
We use a mechanically isolated quantum emitter in hexagonal boron nitride to explore the individual mechanisms which affect the coherence of an optical transition under resonant drive.
New insights on the underlying physical decoherence mechanisms reveals a limit in temperature until which coherent driving of the system is possible.
arXiv Detail & Related papers (2023-12-18T10:37:06Z) - Simultaneous nanorheometry and nanothermometry using intracellular
diamond quantum sensors [0.0]
We present a dual-mode quantum sensor capable of performing simultaneous nanoscale thermometry and rheometry in a dynamic cellular environment.
We demonstrate nanoscale sensing of temperature-dependent viscoelasticity in complex media.
We then use our sensor to investigate the interplay between intracellular forces and cytoplasmic rheology in live cells, revealing details of active trafficking and nanoscale viscoelasticity.
arXiv Detail & Related papers (2023-06-29T21:18:19Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
Microwave or radio-frequency driving poses a significant limitation for miniaturization, energy-efficiency and non-invasiveness of quantum sensors.
We overcome this limitation by demonstrating a purely optical approach to coherent quantum sensing.
Our results pave the way for highly compact quantum sensors to be employed for magnetometry or gyroscopy applications.
arXiv Detail & Related papers (2022-12-14T08:34:11Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Microfluidic quantum sensing platform for lab-on-a-chip applications [0.0]
We present a fully integrated microfluidic platform for solid-state spin quantum sensors, such as the nitrogen-vacancy center in diamond.
Our work opens the door for novel chemical analysis capabilities within LOC devices with applications in electrochemistry, high throughput reaction screening, bioanalytics, organ-on-a-chip, or single-cell studies.
arXiv Detail & Related papers (2022-09-04T16:01:56Z) - Near-Field Terahertz Nanoscopy of Coplanar Microwave Resonators [61.035185179008224]
Superconducting quantum circuits are one of the leading quantum computing platforms.
To advance superconducting quantum computing to a point of practical importance, it is critical to identify and address material imperfections that lead to decoherence.
Here, we use terahertz Scanning Near-field Optical Microscopy to probe the local dielectric properties and carrier concentrations of wet-etched aluminum resonators on silicon.
arXiv Detail & Related papers (2021-06-24T11:06:34Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Basis-independent system-environment coherence is necessary to detect
magnetic field direction in an avian-inspired quantum magnetic sensor [77.34726150561087]
We consider an avian-inspired quantum magnetic sensor composed of two radicals with a third "scavenger" radical under the influence of a collisional environment.
We show that basis-independent coherence, in which the initial system-environment state is non-maximally mixed, is necessary for optimal performance.
arXiv Detail & Related papers (2020-11-30T17:19:17Z) - A robust fiber-based quantum thermometer coupled with nitrogen-vacancy
centers [29.359306535600815]
We present a robust fiber-based quantum thermometer which can significantly isolate the magnetic field noise and microwave power shift.
With a frequency modulation scheme, we realize the temperature measurement by detecting the variation of the sharp-dip in the zero-field optically detected magnetic resonance spectrum.
arXiv Detail & Related papers (2020-04-09T03:24:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.