論文の概要: UniAnimate: Taming Unified Video Diffusion Models for Consistent Human Image Animation
- arxiv url: http://arxiv.org/abs/2406.01188v1
- Date: Mon, 3 Jun 2024 10:51:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 01:28:45.140965
- Title: UniAnimate: Taming Unified Video Diffusion Models for Consistent Human Image Animation
- Title(参考訳): UniAnimate: 一貫性のある人間の画像アニメーションのための統一ビデオ拡散モデルの開発
- Authors: Xiang Wang, Shiwei Zhang, Changxin Gao, Jiayu Wang, Xiaoqiang Zhou, Yingya Zhang, Luxin Yan, Nong Sang,
- Abstract要約: We present a UniAnimate framework to enable efficient and long-term human video generation。
我々は、姿勢案内やノイズビデオとともに参照画像を共通の特徴空間にマッピングする。
また、ランダムノイズ入力と第1フレーム条件入力をサポートする統一ノイズ入力を提案する。
- 参考スコア(独自算出の注目度): 53.16986875759286
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent diffusion-based human image animation techniques have demonstrated impressive success in synthesizing videos that faithfully follow a given reference identity and a sequence of desired movement poses. Despite this, there are still two limitations: i) an extra reference model is required to align the identity image with the main video branch, which significantly increases the optimization burden and model parameters; ii) the generated video is usually short in time (e.g., 24 frames), hampering practical applications. To address these shortcomings, we present a UniAnimate framework to enable efficient and long-term human video generation. First, to reduce the optimization difficulty and ensure temporal coherence, we map the reference image along with the posture guidance and noise video into a common feature space by incorporating a unified video diffusion model. Second, we propose a unified noise input that supports random noised input as well as first frame conditioned input, which enhances the ability to generate long-term video. Finally, to further efficiently handle long sequences, we explore an alternative temporal modeling architecture based on state space model to replace the original computation-consuming temporal Transformer. Extensive experimental results indicate that UniAnimate achieves superior synthesis results over existing state-of-the-art counterparts in both quantitative and qualitative evaluations. Notably, UniAnimate can even generate highly consistent one-minute videos by iteratively employing the first frame conditioning strategy. Code and models will be publicly available. Project page: https://unianimate.github.io/.
- Abstract(参考訳): 最近の拡散に基づく人間の画像アニメーション技術は、与えられた参照アイデンティティと望ましい動きの連続を忠実に追従するビデオの合成において、驚くべき成功を収めている。
それにもかかわらず、まだ2つの制限がある。
一 特典画像とメインビデオブランチとの整合を図り、最適化の負担とモデルパラメータを大幅に増大させる余分な参照モデルが必要である。
二 生成されたビデオは、通常、短い時間(例えば24フレーム)であり、実用上の応用を妨げる。
これらの欠点に対処するため、我々は、効率よく長期的なヒューマンビデオ生成を可能にするUniAnimateフレームワークを提案する。
まず、最適化の難しさを低減し、時間的コヒーレンスを確保するため、映像拡散モデルを統合することで、姿勢誘導やノイズビデオとともに、参照画像を共通の特徴空間にマッピングする。
第2に、ランダムノイズ入力と第1フレーム条件入力をサポートする統一ノイズ入力を提案する。
最後に、より効率的に長いシーケンスを処理するために、状態空間モデルに基づく代替の時間的モデリングアーキテクチャを探索し、計算に費やした時間的変換器を置き換える。
実験結果から,UniAnimateは既存の最先端技術よりも定量的および定性的な評価において優れた合成結果が得られることが示唆された。
特に、UniAnimateは、第1フレーム条件付け戦略を反復的に活用することで、高度に一貫した1分間のビデオを生成することができる。
コードとモデルは公開されます。
プロジェクトページ: https://unianimate.github.io/.com
関連論文リスト
- StableAnimator: High-Quality Identity-Preserving Human Image Animation [64.63765800569935]
本稿では,最初のエンドツーエンドID保存ビデオ拡散フレームワークであるStableAnimatorについて述べる。
ポストプロセッシングなしで高品質なビデオを合成し、参照画像とポーズのシーケンスに条件付けする。
推論中,顔の質をより高めるためにハミルトン・ヤコビベルマン(HJB)方程式に基づく新しい最適化を提案する。
論文 参考訳(メタデータ) (2024-11-26T18:59:22Z) - Puppet-Master: Scaling Interactive Video Generation as a Motion Prior for Part-Level Dynamics [67.97235923372035]
本稿では,対話型ビデオ生成モデルであるPuppet-Masterについて紹介する。
テスト時には、ひとつのイメージと粗い動き軌跡が与えられた場合、Puppet-Masterは、与えられたドラッグ操作に忠実な現実的な部分レベルの動きを描写したビデオを合成することができる。
論文 参考訳(メタデータ) (2024-08-08T17:59:38Z) - EasyAnimate: A High-Performance Long Video Generation Method based on Transformer Architecture [11.587428534308945]
EasyAnimateは、高性能な結果を得るためにトランスフォーマーアーキテクチャのパワーを利用する、ビデオ生成の先進的な方法である。
動作モジュールブロックを組み込んで,3次元映像生成の複雑さに対応するために,当初2次元画像合成用に設計されたDiTフレームワークを拡張した。
我々は、データ前処理、VAEトレーニング、DiTモデルトレーニング、エンドツーエンドのビデオ推論といった側面を含む、DiTに基づくビデオ制作のための総合的なエコシステムを提供する。
論文 参考訳(メタデータ) (2024-05-29T11:11:07Z) - LoopAnimate: Loopable Salient Object Animation [19.761865029125524]
LoopAnimateは、一貫した開始フレームと終了フレームでビデオを生成する新しい方法である。
忠実度や時間的整合性,主観評価結果など,両指標の最先端性を実現している。
論文 参考訳(メタデータ) (2024-04-14T07:36:18Z) - Lumiere: A Space-Time Diffusion Model for Video Generation [75.54967294846686]
本研究では,一度にビデオ全体の時間的持続時間を生成する空間時間U-Netアーキテクチャを提案する。
これは、遠方から後続の時間超解像を合成する既存のビデオモデルとは対照的である。
空間的および(重要な)時間的ダウンサンプリングとアップサンプリングの両方をデプロイすることで、我々のモデルは、フルフレームレートで低解像度のビデオを直接生成することを学ぶ。
論文 参考訳(メタデータ) (2024-01-23T18:05:25Z) - AnimateZero: Video Diffusion Models are Zero-Shot Image Animators [63.938509879469024]
我々はAnimateZeroを提案し、事前訓練されたテキスト・ビデオ拡散モデル、すなわちAnimateDiffを提案する。
外観制御のために,テキスト・ツー・イメージ(T2I)生成から中間潜伏子とその特徴を借りる。
時間的制御では、元のT2Vモデルのグローバルな時間的注意を位置補正窓の注意に置き換える。
論文 参考訳(メタデータ) (2023-12-06T13:39:35Z) - Animate Anyone: Consistent and Controllable Image-to-Video Synthesis for Character Animation [27.700371215886683]
拡散モデルは、その堅牢な生成能力のために、視覚世代研究の主流となっている。
本稿では,キャラクターアニメーションに適した新しいフレームワークを提案する。
トレーニングデータを拡張することにより、任意の文字をアニメーション化することが可能となり、他の画像とビデオの手法と比較して、文字アニメーションにおいて優れた結果が得られる。
論文 参考訳(メタデータ) (2023-11-28T12:27:15Z) - MagicAnimate: Temporally Consistent Human Image Animation using
Diffusion Model [74.84435399451573]
本稿では、特定の動きシーケンスに従って、特定の参照アイデンティティのビデオを生成することを目的とした、人間の画像アニメーションタスクについて検討する。
既存のアニメーションは、通常、フレームウォーピング技術を用いて参照画像を目標運動に向けてアニメーションする。
MagicAnimateは,時間的一貫性の向上,参照画像の忠実な保存,アニメーションの忠実性向上を目的とした,拡散に基づくフレームワークである。
論文 参考訳(メタデータ) (2023-11-27T18:32:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。