論文の概要: S-CycleGAN: Semantic Segmentation Enhanced CT-Ultrasound Image-to-Image Translation for Robotic Ultrasonography
- arxiv url: http://arxiv.org/abs/2406.01191v1
- Date: Mon, 3 Jun 2024 10:53:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-06 01:28:45.135161
- Title: S-CycleGAN: Semantic Segmentation Enhanced CT-Ultrasound Image-to-Image Translation for Robotic Ultrasonography
- Title(参考訳): S-CycleGAN: CT-Ultrasound Image-to- Image Translationによるロボット超音波診断
- Authors: Yuhan Song, Nak Young Chong,
- Abstract要約: 我々はS-CycleGANと呼ばれる高度なディープラーニングモデルを導入し,CTデータから高品質な合成超音波画像を生成する。
合成画像は、セマンティックセグメンテーションモデルとロボット支援超音波スキャンシステムの開発のためのトレーニングデータセットを強化するために使用される。
- 参考スコア(独自算出の注目度): 2.07180164747172
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Ultrasound imaging is pivotal in various medical diagnoses due to its non-invasive nature and safety. In clinical practice, the accuracy and precision of ultrasound image analysis are critical. Recent advancements in deep learning are showing great capacity of processing medical images. However, the data hungry nature of deep learning and the shortage of high-quality ultrasound image training data suppress the development of deep learning based ultrasound analysis methods. To address these challenges, we introduce an advanced deep learning model, dubbed S-CycleGAN, which generates high-quality synthetic ultrasound images from computed tomography (CT) data. This model incorporates semantic discriminators within a CycleGAN framework to ensure that critical anatomical details are preserved during the style transfer process. The synthetic images produced are used to augment training datasets for semantic segmentation models and robot-assisted ultrasound scanning system development, enhancing their ability to accurately parse real ultrasound imagery.
- Abstract(参考訳): 超音波画像は、その非侵襲性や安全性のため、様々な診断において重要である。
臨床実践においては,超音波画像解析の精度と精度が重要である。
近年の深層学習の進歩は, 医用画像の処理能力が大きく向上している。
しかし、深層学習のデータ飢えの性質と高品質な超音波画像訓練データ不足により、深層学習に基づく超音波解析法の開発が抑制される。
これらの課題に対処するために,CTデータから高品質な合成超音波画像を生成するS-CycleGANという高度なディープラーニングモデルを導入する。
このモデルは、CycleGANフレームワークにセマンティック識別器を組み込んで、スタイル転送プロセス中に重要な解剖学的詳細が保存されることを保証する。
生成した合成画像は、セマンティックセグメンテーションモデルとロボット支援超音波スキャンシステムの開発のためのトレーニングデータセットを強化するために使用され、実際の超音波画像を正確に解析する能力を高める。
関連論文リスト
- CathFlow: Self-Supervised Segmentation of Catheters in Interventional Ultrasound Using Optical Flow and Transformers [66.15847237150909]
縦型超音波画像におけるカテーテルのセグメンテーションのための自己教師型ディープラーニングアーキテクチャを提案する。
ネットワークアーキテクチャは、Attention in Attentionメカニズムで構築されたセグメンテーショントランスフォーマであるAiAReSeg上に構築されている。
我々は,シリコンオルタファントムから収集した合成データと画像からなる実験データセット上で,我々のモデルを検証した。
論文 参考訳(メタデータ) (2024-03-21T15:13:36Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
血管内手術は、電離放射線を用いてカテーテルと血管を可視化するFluoroscopyの黄金標準を用いて行われる。
本研究では、最先端機械学習トランスフォーマアーキテクチャを応用して、軸干渉超音波画像シーケンス中のカテーテルを検出し、セグメント化する手法を提案する。
論文 参考訳(メタデータ) (2023-09-25T19:34:12Z) - LOTUS: Learning to Optimize Task-based US representations [39.81131738128329]
超音波画像における臓器の解剖学的セグメンテーションは多くの臨床応用に不可欠である。
既存のディープニューラルネットワークは、臨床的に許容できるパフォーマンスを達成するために、トレーニングのために大量のラベル付きデータを必要とする。
本稿では,タスクベース超音速画像表現を最適化する学習手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T16:29:39Z) - Reslicing Ultrasound Images for Data Augmentation and Vessel
Reconstruction [22.336362581634706]
本稿では,追跡された2次元画像から再構成された3次元ボリュームをスライスした超音波画像に対する弱い監視データ拡張手法であるRESUSを紹介する。
超音波画像の物理的制約により生体内で容易に得られないビューを生成し,これらの拡張超音波画像を用いてセマンティックセグメンテーションモデルを訓練する。
我々は, RESUSが非拡張画像を用いた訓練よりも統計的に有意な改善を達成し, 血管再建による質的改善を強調できることを実証した。
論文 参考訳(メタデータ) (2023-01-18T03:22:47Z) - Ultrasound Signal Processing: From Models to Deep Learning [64.56774869055826]
医用超音波画像は、信頼性と解釈可能な画像再構成を提供するために、高品質な信号処理に大きく依存している。
データ駆動方式で最適化されたディープラーニングベースの手法が人気を集めている。
比較的新しいパラダイムは、データ駆動型ディープラーニングの活用とドメイン知識の活用という2つのパワーを組み合わせたものだ。
論文 参考訳(メタデータ) (2022-04-09T13:04:36Z) - Voice-assisted Image Labelling for Endoscopic Ultrasound Classification
using Neural Networks [48.732863591145964]
本稿では,臨床医が提示した生音声からのEUS画像にラベルを付けるマルチモーダル畳み込みニューラルネットワークアーキテクチャを提案する。
その結果,5つのラベルを持つデータセットにおいて,画像レベルでの予測精度は76%であった。
論文 参考訳(メタデータ) (2021-10-12T21:22:24Z) - Deep Learning for Ultrasound Beamforming [120.12255978513912]
受信した超音波エコーを空間画像領域にマッピングするビームフォーミングは、超音波画像形成チェーンの心臓に位置する。
現代の超音波イメージングは、強力なデジタル受信チャネル処理の革新に大きく依存している。
ディープラーニング手法は、デジタルビームフォーミングパイプラインにおいて魅力的な役割を果たす。
論文 参考訳(メタデータ) (2021-09-23T15:15:21Z) - Semantic segmentation of multispectral photoacoustic images using deep
learning [53.65837038435433]
光音響イメージングは医療に革命をもたらす可能性がある。
この技術の臨床的翻訳には、高次元取得したデータを臨床的に関連性があり解釈可能な情報に変換する必要がある。
本稿では,多スペクトル光音響画像のセマンティックセグメンテーションに対する深層学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-20T09:33:55Z) - Ultrasound Image Classification using ACGAN with Small Training Dataset [0.0]
ディープラーニングモデルのトレーニングには大きなラベル付きデータセットが必要であるが、超音波画像では利用できないことが多い。
我々は、大規模データ拡張と転送学習の利点を組み合わせた、ジェネレーティブ・アドバイサル・ネットワーク(ACGAN)を利用する。
乳房超音波画像のデータセットを用いて,提案手法の有効性を示す実験を行った。
論文 参考訳(メタデータ) (2021-01-31T11:11:24Z) - A Universal Deep Learning Framework for Real-Time Denoising of
Ultrasound Images [0.0]
超音波画像のリアルタイムデノライゼーションのための普遍的ディープラーニングフレームワークを定義した。
超音波画像の平滑化のための最先端手法の解析と比較を行った。
そこで本研究では,選択された最新デノイジング手法のチューニング版を提案する。
論文 参考訳(メタデータ) (2021-01-22T14:18:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。