論文の概要: Unsupervised Distractor Generation via Large Language Model Distilling and Counterfactual Contrastive Decoding
- arxiv url: http://arxiv.org/abs/2406.01306v1
- Date: Mon, 3 Jun 2024 13:20:05 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 23:09:15.602585
- Title: Unsupervised Distractor Generation via Large Language Model Distilling and Counterfactual Contrastive Decoding
- Title(参考訳): 大規模言語モデルによる教師なしディトラクタ生成とコントラスト復号
- Authors: Fanyi Qu, Hao Sun, Yunfang Wu,
- Abstract要約: Distractor Generation (DG) は、読者を混乱させるいくつかの誤ったオプションを生成することを目的としている。
従来のDGの監督手法は、高価な人間の注釈付きイントラクタラベルに大きく依存している。
本稿では,大規模言語モデル(LLM)を費用対効果アノテータとして活用する,教師なしのDGフレームワークを提案する。
- 参考スコア(独自算出の注目度): 13.348768763717027
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Within the context of reading comprehension, the task of Distractor Generation (DG) aims to generate several incorrect options to confuse readers. Traditional supervised methods for DG rely heavily on expensive human-annotated distractor labels. In this paper, we propose an unsupervised DG framework, leveraging Large Language Models (LLMs) as cost-effective annotators to enhance the DG capability of smaller student models. Specially, to perform knowledge distilling, we propose a dual task training strategy that integrates pseudo distractors from LLMs and the original answer in-formation as the objective targets with a two-stage training process. Moreover, we devise a counterfactual contrastive decoding mechanism for increasing the distracting capability of the DG model. Experiments show that our unsupervised generation method with Bart-base greatly surpasses GPT-3.5-turbo performance with only 200 times fewer model parameters. Our proposed unsupervised DG method offers a cost-effective framework for practical reading comprehension applications, without the need of laborious distractor annotation and costly large-size models
- Abstract(参考訳): 読解理解のコンテキスト内では、DG(Distractor Generation)タスクは、読者を混乱させるいくつかの誤った選択肢を生成することを目的としている。
従来のDGの監督手法は、高価な人間に注釈付けされたイントラクタラベルに大きく依存している。
本稿では,小学生モデルのDG能力を高めるために,LLM(Large Language Models)をコスト効率のよいアノテータとして活用する,教師なしのDGフレームワークを提案する。
特に, 2段階の学習プロセスにおいて, LLMからの擬似的注意散らしと, 目的とする元の回答情報とを統合して, 知識蒸留を行うための2つのタスクトレーニング戦略を提案する。
さらに,DGモデルの注意をそらす能力を高めるために,反実的コントラストデコーディング機構を考案した。
実験の結果,バルトベースを用いた教師なし生成法はモデルパラメータの200倍の差でGPT-3.5-turbo性能を大幅に上回ることがわかった。
筆者らが提案する教師なしDG手法は, 手間のかかる注意散らしアノテーションやコストのかかる大規模モデルを必要としない, 実用的な読解アプリケーションのための費用効率のよいフレームワークを提供する。
関連論文リスト
- Diffusion Augmented Agents: A Framework for Efficient Exploration and Transfer Learning [6.06616040517684]
DAAGは、拡散モデルを使って動画を変換することで、エージェントの過去の経験を再ラベルする。
大規模言語モデルは、人間の監督を必要とせずに、この自律的なプロセスを編成する。
その結果、DAAGは報酬検知器の学習を改善し、過去の経験を移譲し、新しいタスクを取得する。
論文 参考訳(メタデータ) (2024-07-30T13:01:31Z) - Manifold Preserving Guided Diffusion [121.97907811212123]
条件付き画像生成は、コスト、一般化可能性、タスク固有のトレーニングの必要性といった課題に直面している。
トレーニング不要な条件生成フレームワークであるManifold Preserving Guided Diffusion (MPGD)を提案する。
論文 参考訳(メタデータ) (2023-11-28T02:08:06Z) - OVM, Outcome-supervised Value Models for Planning in Mathematical Reasoning [15.59540726867483]
我々は、ガイド付き復号法では、ステップごとの正当性を保証するよりも、不完全推論経路の可能性を評価する方が有利であると主張している。
誘導復号化のための$textitoutcomeの監督が本質的に価値モデルとして機能するという発見に触発されて、アウトカム管理価値モデル(OVM)を提案する。
GSM8KとGame of 24の2つの多段階数学的推論データセットに対する実験により,OVMモデルの優れた性能が示された。
論文 参考訳(メタデータ) (2023-11-16T09:56:28Z) - Self-Destructing Models: Increasing the Costs of Harmful Dual Uses of
Foundation Models [103.71308117592963]
本稿ではメタラーニングと逆学習の技法を活用した自己破壊モデルの学習アルゴリズムを提案する。
小規模な実験では、MLACは、BERTスタイルのモデルが性別識別を行うために再目的化されることをほとんど防ぐことができることを示す。
論文 参考訳(メタデータ) (2022-11-27T21:43:45Z) - On-Device Domain Generalization [93.79736882489982]
ドメインの一般化はデバイス上の機械学習アプリケーションにとって重要である。
知識蒸留がこの問題の解決の有力な候補であることがわかった。
本研究では,教師が配布外データをどのように扱えるかを学生に教えることを目的とした,配布外知識蒸留(OKD)という簡単なアイデアを提案する。
論文 参考訳(メタデータ) (2022-09-15T17:59:31Z) - DL-DRL: A double-level deep reinforcement learning approach for
large-scale task scheduling of multi-UAV [65.07776277630228]
分割・征服フレームワーク(DCF)に基づく二重レベル深層強化学習(DL-DRL)手法を提案する。
特に,上層部DRLモデルにおけるエンコーダ・デコーダ構成ポリシネットワークを設計し,タスクを異なるUAVに割り当てる。
また、低レベルDRLモデルにおける別の注意に基づくポリシーネットワークを利用して、各UAVの経路を構築し、実行されたタスク数を最大化する。
論文 参考訳(メタデータ) (2022-08-04T04:35:53Z) - SUPERB-SG: Enhanced Speech processing Universal PERformance Benchmark
for Semantic and Generative Capabilities [76.97949110580703]
各種音声タスクの事前学習モデルを評価するための新しいベンチマークであるSUPERB-SGを紹介する。
データドメインのシフトの下で、事前訓練されたモデルによって学習された表現の堅牢性をテストするために、軽量な方法論を使用します。
また,SUPERB-SGのタスク多様性とタスク監督の限定が,モデル表現の一般化性を評価する効果的な方法であることを示す。
論文 参考訳(メタデータ) (2022-03-14T04:26:40Z) - Activation to Saliency: Forming High-Quality Labels for Unsupervised
Salient Object Detection [54.92703325989853]
本稿では,高品質なサリエンシキューを効果的に生成する2段階アクティベーション・ツー・サリエンシ(A2S)フレームワークを提案する。
トレーニングプロセス全体において、私たちのフレームワークにヒューマンアノテーションは関与していません。
本フレームワークは,既存のUSOD法と比較して高い性能を示した。
論文 参考訳(メタデータ) (2021-12-07T11:54:06Z) - ErGAN: Generative Adversarial Networks for Entity Resolution [8.576633582363202]
学習ベースのエンティティ解決の大きな課題は、トレーニングのラベルコストを削減する方法です。
そこで本研究では,erganと呼ばれる新しい深層学習手法を提案する。
ErGANのラベリングと学習効率を実証的に検証するための広範な実験を実施しました。
論文 参考訳(メタデータ) (2020-12-18T01:33:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。