REvolve: Reward Evolution with Large Language Models using Human Feedback
- URL: http://arxiv.org/abs/2406.01309v2
- Date: Tue, 29 Oct 2024 21:16:56 GMT
- Title: REvolve: Reward Evolution with Large Language Models using Human Feedback
- Authors: Rishi Hazra, Alkis Sygkounas, Andreas Persson, Amy Loutfi, Pedro Zuidberg Dos Martires,
- Abstract summary: Large language models (LLMs) have been used for reward generation from natural language task descriptions.
LLMs, guided by human feedback, can be used to formulate reward functions that reflect human implicit knowledge.
We introduce REvolve, a truly evolutionary framework that uses LLMs for reward design in reinforcement learning.
- Score: 6.4550546442058225
- License:
- Abstract: Designing effective reward functions is crucial to training reinforcement learning (RL) algorithms. However, this design is non-trivial, even for domain experts, due to the subjective nature of certain tasks that are hard to quantify explicitly. In recent works, large language models (LLMs) have been used for reward generation from natural language task descriptions, leveraging their extensive instruction tuning and commonsense understanding of human behavior. In this work, we hypothesize that LLMs, guided by human feedback, can be used to formulate reward functions that reflect human implicit knowledge. We study this in three challenging settings -- autonomous driving, humanoid locomotion, and dexterous manipulation -- wherein notions of ``good" behavior are tacit and hard to quantify. To this end, we introduce REvolve, a truly evolutionary framework that uses LLMs for reward design in RL. REvolve generates and refines reward functions by utilizing human feedback to guide the evolution process, effectively translating implicit human knowledge into explicit reward functions for training (deep) RL agents. Experimentally, we demonstrate that agents trained on REvolve-designed rewards outperform other state-of-the-art baselines.
Related papers
- Exploring RL-based LLM Training for Formal Language Tasks with Programmed Rewards [49.7719149179179]
This paper investigates the feasibility of using PPO for reinforcement learning (RL) from explicitly programmed reward signals.
We focus on tasks expressed through formal languages, such as programming, where explicit reward functions can be programmed to automatically assess quality of generated outputs.
Our results show that pure RL-based training for the two formal language tasks is challenging, with success being limited even for the simple arithmetic task.
arXiv Detail & Related papers (2024-10-22T15:59:58Z) - A Large Language Model-Driven Reward Design Framework via Dynamic Feedback for Reinforcement Learning [25.82540393199001]
CARD is a Reward Design framework that iteratively generates and improves reward function code.
CARD includes a Coder that generates and verifies the code, while a Evaluator provides dynamic feedback to guide the Coder in improving the code.
arXiv Detail & Related papers (2024-10-18T17:51:51Z) - In-context Learning for Automated Driving Scenarios [15.325910109153616]
One of the key challenges in current Reinforcement Learning (RL)-based Automated Driving (AD) agents is achieving flexible, precise, and human-like behavior cost-effectively.
This paper introduces an innovative approach utilizing Large Language Models (LLMs) to intuitively and effectively optimize RL reward functions in a human-centric way.
arXiv Detail & Related papers (2024-05-07T09:04:52Z) - REBEL: A Regularization-Based Solution for Reward Overoptimization in Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and user intentions, values, or social norms can be catastrophic in the real world.
Current methods to mitigate this misalignment work by learning reward functions from human preferences.
We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - Accelerating Reinforcement Learning of Robotic Manipulations via
Feedback from Large Language Models [21.052532074815765]
We introduce the Lafite-RL (Language agent feedback interactive Reinforcement Learning) framework.
It enables RL agents to learn robotic tasks efficiently by taking advantage of Large Language Models' timely feedback.
It outperforms the baseline in terms of both learning efficiency and success rate.
arXiv Detail & Related papers (2023-11-04T11:21:38Z) - Eureka: Human-Level Reward Design via Coding Large Language Models [121.91007140014982]
Large Language Models (LLMs) have excelled as high-level semantic planners for sequential decision-making tasks.
We present Eureka, a human-level reward design algorithm powered by LLMs.
Eureka exploits the remarkable zero-shot generation, code-writing, and in-context improvement capabilities of state-of-the-art LLMs.
arXiv Detail & Related papers (2023-10-19T17:31:01Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Reward Uncertainty for Exploration in Preference-based Reinforcement
Learning [88.34958680436552]
We present an exploration method specifically for preference-based reinforcement learning algorithms.
Our main idea is to design an intrinsic reward by measuring the novelty based on learned reward.
Our experiments show that exploration bonus from uncertainty in learned reward improves both feedback- and sample-efficiency of preference-based RL algorithms.
arXiv Detail & Related papers (2022-05-24T23:22:10Z) - PEBBLE: Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training [94.87393610927812]
We present an off-policy, interactive reinforcement learning algorithm that capitalizes on the strengths of both feedback and off-policy learning.
We demonstrate that our approach is capable of learning tasks of higher complexity than previously considered by human-in-the-loop methods.
arXiv Detail & Related papers (2021-06-09T14:10:50Z) - Accelerating Reinforcement Learning Agent with EEG-based Implicit Human
Feedback [10.138798960466222]
Reinforcement Learning (RL) agents with human feedback can dramatically improve various aspects of learning.
Previous methods require human observer to give inputs explicitly, burdening the human in the loop of RL agent's learning process.
We investigate capturing human's intrinsic reactions as implicit (and natural) feedback through EEG in the form of error-related potentials (ErrP)
arXiv Detail & Related papers (2020-06-30T03:13:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.