論文の概要: Sparsity-Accelerated Training for Large Language Models
- arxiv url: http://arxiv.org/abs/2406.01392v1
- Date: Mon, 3 Jun 2024 14:56:09 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 22:39:57.234066
- Title: Sparsity-Accelerated Training for Large Language Models
- Title(参考訳): 大規模言語モデルのための空間加速訓練
- Authors: Da Ma, Lu Chen, Pengyu Wang, Hongshen Xu, Hanqi Li, Liangtai Sun, Su Zhu, Shuai Fan, Kai Yu,
- Abstract要約: 大規模言語モデル (LLM) は様々な自然言語処理 (NLP) タスクの習熟度を示した。
LLMは、連続的な事前訓練や教師付き微調整など、追加の訓練を必要とすることが多い。
本稿では,この学習プロセスの迅速化のために,事前学習したLLMのエンハンスパシティを活用することを提案する。
- 参考スコア(独自算出の注目度): 20.86225596276327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have demonstrated proficiency across various natural language processing (NLP) tasks but often require additional training, such as continual pre-training and supervised fine-tuning. However, the costs associated with this, primarily due to their large parameter count, remain high. This paper proposes leveraging \emph{sparsity} in pre-trained LLMs to expedite this training process. By observing sparsity in activated neurons during forward iterations, we identify the potential for computational speed-ups by excluding inactive neurons. We address associated challenges by extending existing neuron importance evaluation metrics and introducing a ladder omission rate scheduler. Our experiments on Llama-2 demonstrate that Sparsity-Accelerated Training (SAT) achieves comparable or superior performance to standard training while significantly accelerating the process. Specifically, SAT achieves a $45\%$ throughput improvement in continual pre-training and saves $38\%$ training time in supervised fine-tuning in practice. It offers a simple, hardware-agnostic, and easily deployable framework for additional LLM training. Our code is available at https://github.com/OpenDFM/SAT.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクの習熟度を示すが、連続的な事前学習や教師付き微調整のような追加の訓練を必要とすることが多い。
しかし、これに関連するコストは、主にパラメータ数が大きいため、依然として高いままである。
本稿では,プレトレーニングLDMにおけるemph{sparsity}の利用により,この学習プロセスを高速化することを提案する。
前方反復中の活性化ニューロンの間隔を観察することにより、不活性ニューロンを排除して計算速度を上げる可能性を同定する。
我々は、既存のニューロン重要度評価指標を拡張し、ラダー省略率スケジューラを導入することで、関連する課題に対処する。
Llama-2の実験では、Sparsity-Accelerated Training (SAT) は標準トレーニングと同等あるいは優れた性能を示しながら、プロセスの大幅な高速化を実現している。
具体的には、SATは連続的な事前トレーニングで45 %$スループットの改善を達成し、実際に教師付き微調整で38 %$トレーニング時間を節約する。
ハードウェアに依存しないシンプルで、デプロイが容易なフレームワークで、追加のLLMトレーニングを提供する。
私たちのコードはhttps://github.com/OpenDFM/SAT.comで公開されています。
関連論文リスト
- Exploring the Benefit of Activation Sparsity in Pre-training [117.25661020250658]
プレトレーニング中に活性化特性がどう変化するかを検討した。
本稿では,Sparse-Dense Learning (SSD)を提案する。
SSDは同じモデルサイズで同等のパフォーマンスを実現し、事前トレーニングコストを削減する。
論文 参考訳(メタデータ) (2024-10-04T13:53:33Z) - Instruction Pre-Training: Language Models are Supervised Multitask Learners [115.95022434390181]
本稿では,事前学習言語モデル(LM)に対して,命令応答対を用いた大規模生コーパスを付加するフレームワークを提案する。
実験では,40以上のタスクカテゴリをカバーする2億の命令応答ペアを合成し,インストラクション事前学習の有効性を検証する。
論文 参考訳(メタデータ) (2024-06-20T16:55:33Z) - GrowLength: Accelerating LLMs Pretraining by Progressively Growing
Training Length [65.24730341801468]
本稿では,大規模言語モデルの事前学習プロセスを促進するために,Growlength'という,新しい,シンプルで効果的な手法を提案する。
本手法は,事前学習期間を通じてトレーニング期間を段階的に延長し,計算コストを軽減し,効率を向上する。
論文 参考訳(メタデータ) (2023-10-01T05:25:24Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Towards Efficient Post-training Quantization of Pre-trained Language
Models [85.68317334241287]
PLMのポストトレーニング量子化(PTQ)について検討し,モジュール単位の量子化誤差最小化(MREM)を提案する。
GLUEとSQuADベンチマークの実験により、提案したPTQソリューションはQATに近く動作するだけでなく、トレーニング時間、メモリオーバーヘッド、データ消費を大幅に削減できることがわかった。
論文 参考訳(メタデータ) (2021-09-30T12:50:06Z) - EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets [106.79387235014379]
EarlyBERTは、大規模言語モデルの事前学習と微調整の両方に適用できる一般的な計算効率のトレーニングアルゴリズムである。
BERTトレーニングの初期段階において、構造化された入賞チケットを最初に識別し、効率的なトレーニングに使用します。
EarlyBERTは、トレーニング時間を3545%短縮した標準BERTと同等のパフォーマンスを簡単に達成します。
論文 参考訳(メタデータ) (2020-12-31T20:38:20Z) - Progressively Stacking 2.0: A Multi-stage Layerwise Training Method for
BERT Training Speedup [13.50984315473865]
BERTのトレーニング時間を短縮するために,効率的な多段階階層トレーニング(MSLT)手法を提案する。
提案されたトレーニング戦略では、上位層のみが後方計算に参加し、ほとんどの層は前方計算にのみ参加する。
実験結果から,提案手法は性能劣化を伴わずに110%以上のトレーニングスピードアップを達成できることが示唆された。
論文 参考訳(メタデータ) (2020-11-27T10:00:22Z) - Accelerating Training of Transformer-Based Language Models with
Progressive Layer Dropping [24.547833264405355]
提案手法は, サンプルあたり平均24%の時間短縮を実現し, プレトレーニングをベースラインの2.5倍の速度で行うことができる。
トレーニング済みのモデルでは,より高速ながら,強力な知識伝達能力を備え,ベースラインよりも高いGLUEスコアを達成できる。
論文 参考訳(メタデータ) (2020-10-26T06:50:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。