Asynchronous Byzantine Federated Learning
- URL: http://arxiv.org/abs/2406.01438v2
- Date: Thu, 20 Jun 2024 08:11:12 GMT
- Title: Asynchronous Byzantine Federated Learning
- Authors: Bart Cox, Abele Mălan, Lydia Y. Chen, Jérémie Decouchant,
- Abstract summary: Federated learning (FL) enables a set of geographically distributed clients to collectively train a model through a server.
Our solution is one of the first Byzantine-resilient and asynchronous FL algorithms.
We compare the performance of our solution with state-of-the-art algorithms on both image and text datasets.
- Score: 4.6792910030704515
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Federated learning (FL) enables a set of geographically distributed clients to collectively train a model through a server. Classically, the training process is synchronous, but can be made asynchronous to maintain its speed in presence of slow clients and in heterogeneous networks. The vast majority of Byzantine fault-tolerant FL systems however rely on a synchronous training process. Our solution is one of the first Byzantine-resilient and asynchronous FL algorithms that does not require an auxiliary server dataset and is not delayed by stragglers, which are shortcomings of previous works. Intuitively, the server in our solution waits to receive a minimum number of updates from clients on its latest model to safely update it, and is later able to safely leverage the updates that late clients might send. We compare the performance of our solution with state-of-the-art algorithms on both image and text datasets under gradient inversion, perturbation, and backdoor attacks. Our results indicate that our solution trains a model faster than previous synchronous FL solution, and maintains a higher accuracy, up to 1.54x and up to 1.75x for perturbation and gradient inversion attacks respectively, in the presence of Byzantine clients than previous asynchronous FL solutions.
Related papers
- Asynchronous Multi-Server Federated Learning for Geo-Distributed Clients [4.6792910030704515]
Federated learning (FL) systems enable multiple clients to train a machine learning model iteratively through synchronously exchanging the intermediate model weights with a single server.
The scalability of such FL systems can be limited by two factors: server idle time due to synchronous communication and the risk of a single server becoming the bottleneck.
We propose a new FL architecture that is entirely asynchronous, and therefore addresses these two limitations simultaneously.
arXiv Detail & Related papers (2024-06-03T15:29:46Z) - FedAST: Federated Asynchronous Simultaneous Training [27.492821176616815]
Federated Learning (FL) enables devices or clients to collaboratively train machine learning (ML) models without sharing their private data.
Much of the existing work in FL focuses on efficiently learning a model for a single task.
In this paper, we propose simultaneous training of multiple FL models using a common set of datasets.
arXiv Detail & Related papers (2024-06-01T05:14:20Z) - Asynchronous Federated Stochastic Optimization for Heterogeneous Objectives Under Arbitrary Delays [0.0]
Federated learning (FL) was recently proposed to securely train models with data held over multiple locations ("clients")
Two major challenges hindering the performance of FL algorithms are long training times caused by straggling clients, and a decline in model accuracy under non-iid local data distributions ("client drift")
We propose and analyze Asynchronous Exact Averaging (AREA), a new (sub)gradient algorithm that utilizes communication to speed up convergence and enhance scalability, and employs client memory to correct the client drift caused by variations in client update frequencies.
arXiv Detail & Related papers (2024-05-16T14:22:49Z) - Client Orchestration and Cost-Efficient Joint Optimization for
NOMA-Enabled Hierarchical Federated Learning [55.49099125128281]
We propose a non-orthogonal multiple access (NOMA) enabled HFL system under semi-synchronous cloud model aggregation.
We show that the proposed scheme outperforms the considered benchmarks regarding HFL performance improvement and total cost reduction.
arXiv Detail & Related papers (2023-11-03T13:34:44Z) - SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model
Communication [11.763368822546468]
We show that SWIFT converges faster with respect to run-time due to its wait-free structure.
SWIFT produces loss levels for image classification, over IID and non-IID data settings, upwards 50% faster than existing SOTA algorithms.
arXiv Detail & Related papers (2022-10-25T14:01:21Z) - Latency Aware Semi-synchronous Client Selection and Model Aggregation
for Wireless Federated Learning [0.6882042556551609]
Federated learning (FL) is a collaborative machine learning framework that requires different clients (e.g., Internet of Things devices) to participate in the machine learning model training process.
Traditional FL process may suffer from the straggler problem in heterogeneous client settings.
We propose a Semisynchronous-client Selection and mOdel aggregation aggregation for federated learNing (LESSON) method that allows all the clients to participate in the whole FL process but with different frequencies.
arXiv Detail & Related papers (2022-10-19T05:59:22Z) - Time-triggered Federated Learning over Wireless Networks [48.389824560183776]
We present a time-triggered FL algorithm (TT-Fed) over wireless networks.
Our proposed TT-Fed algorithm improves the converged test accuracy by up to 12.5% and 5%, respectively.
arXiv Detail & Related papers (2022-04-26T16:37:29Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z) - Low-Latency Federated Learning over Wireless Channels with Differential
Privacy [142.5983499872664]
In federated learning (FL), model training is distributed over clients and local models are aggregated by a central server.
In this paper, we aim to minimize FL training delay over wireless channels, constrained by overall training performance as well as each client's differential privacy (DP) requirement.
arXiv Detail & Related papers (2021-06-20T13:51:18Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.