論文の概要: RaDe-GS: Rasterizing Depth in Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2406.01467v2
- Date: Mon, 24 Jun 2024 11:04:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-26 00:33:22.382501
- Title: RaDe-GS: Rasterizing Depth in Gaussian Splatting
- Title(参考訳): RaDe-GS: ガウシアン・スティングの深さをラスタライズ
- Authors: Baowen Zhang, Chuan Fang, Rakesh Shrestha, Yixun Liang, Xiaoxiao Long, Ping Tan,
- Abstract要約: Gaussian Splatting (GS) は、高品質でリアルタイムなレンダリングを実現するために、新しいビュー合成に非常に効果的であることが証明されている。
本研究は,DTUデータセット上のNeuraLangeloに匹敵するチャムファー距離誤差を導入し,元の3D GS法と同様の計算効率を維持する。
- 参考スコア(独自算出の注目度): 32.38730602146176
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian Splatting (GS) has proven to be highly effective in novel view synthesis, achieving high-quality and real-time rendering. However, its potential for reconstructing detailed 3D shapes has not been fully explored. Existing methods often suffer from limited shape accuracy due to the discrete and unstructured nature of Gaussian splats, which complicates the shape extraction. While recent techniques like 2D GS have attempted to improve shape reconstruction, they often reformulate the Gaussian primitives in ways that reduce both rendering quality and computational efficiency. To address these problems, our work introduces a rasterized approach to render the depth maps and surface normal maps of general 3D Gaussian splats. Our method not only significantly enhances shape reconstruction accuracy but also maintains the computational efficiency intrinsic to Gaussian Splatting. It achieves a Chamfer distance error comparable to NeuraLangelo on the DTU dataset and maintains similar computational efficiency as the original 3D GS methods. Our method is a significant advancement in Gaussian Splatting and can be directly integrated into existing Gaussian Splatting-based methods.
- Abstract(参考訳): Gaussian Splatting (GS) は、高品質でリアルタイムなレンダリングを実現するために、新しいビュー合成に非常に効果的であることが証明されている。
しかし, 詳細な3次元形状を復元する可能性については, 十分に調査されていない。
既存の方法はしばしば、形状抽出を複雑にするガウススプレートの離散的かつ非構造的な性質のために、限られた形状精度に悩まされる。
2D GSのような最近の技術は形状再構成の改善を試みているが、レンダリング品質と計算効率の両方を下げる方法でガウス原始を再構成することが多い。
これらの問題に対処するため,本研究では,一般の3次元ガウススプラットの深度マップと表面正規写像をレンダリングするラスタ化手法を提案する。
提案手法は形状復元精度を大幅に向上させるだけでなく,ガウススプラッティングに固有の計算効率も維持する。
DTUデータセット上ではNeuraLangeloに匹敵するチャンファー距離誤差を達成し、元の3D GS法と同様の計算効率を維持する。
本手法はガウススプラッティングにおける重要な進歩であり,既存のガウススプラッティング法に直接組み込むことができる。
関連論文リスト
- Effective Rank Analysis and Regularization for Enhanced 3D Gaussian Splatting [33.01987451251659]
3D Gaussian Splatting(3DGS)は、高品質な3D再構成によるリアルタイムレンダリングが可能な有望な技術として登場した。
その可能性にもかかわらず、3DGSは針のようなアーティファクト、準最適ジオメトリー、不正確な正常など、課題に直面している。
正規化として有効なランクを導入し、ガウスの構造を制約する。
論文 参考訳(メタデータ) (2024-06-17T15:51:59Z) - Gaussian Opacity Fields: Efficient and Compact Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質でコンパクトな表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - latentSplat: Autoencoding Variational Gaussians for Fast Generalizable 3D Reconstruction [48.86083272054711]
latentSplatは3D潜在空間における意味ガウスを予測し、軽量な生成型2Dアーキテクチャで切り落としてデコードする手法である。
latentSplatは、高速でスケーラブルで高解像度なデータでありながら、復元品質と一般化におけるこれまでの成果よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-24T20:48:36Z) - GaussianPro: 3D Gaussian Splatting with Progressive Propagation [49.918797726059545]
3DGSはStructure-from-Motion (SfM)技術によって生成されるポイントクラウドに大きく依存している。
本稿では, 3次元ガウスの密度化を導くために, プログレッシブ・プログレッシブ・プログレッシブ・ストラテジーを適用した新しい手法を提案する。
提案手法はデータセット上の3DGSを大幅に上回り,PSNRでは1.15dBの改善が見られた。
論文 参考訳(メタデータ) (2024-02-22T16:00:20Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
ユーザがリアルタイムで大きな変形で暗黙の表現を直接変形または操作することは困難である。
我々は,インタラクティブな変形を可能にする新しいGSベースの手法を開発した。
提案手法は,高いフレームレートで良好なレンダリング結果を維持しつつ,高品質な再構成と効率的な変形を実現する。
論文 参考訳(メタデータ) (2024-02-07T12:36:54Z) - NeuSG: Neural Implicit Surface Reconstruction with 3D Gaussian Splatting
Guidance [59.08521048003009]
本稿では,3次元ガウススプラッティングから高精細な表面を復元する神経暗黙的表面再構成パイプラインを提案する。
3Dガウススプラッティングの利点は、詳細な構造を持つ高密度の点雲を生成することができることである。
我々は3次元ガウスを極端に薄くすることで、表面に近い中心を引っ張るスケール正則化器を導入する。
論文 参考訳(メタデータ) (2023-12-01T07:04:47Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
我々は,まず3次元ガウス表現を利用したtextbfGS-SLAM を提案する。
提案手法は,地図の最適化とRGB-Dレンダリングの大幅な高速化を実現するリアルタイム微分可能なスプレイティングレンダリングパイプラインを利用する。
提案手法は,Replica,TUM-RGBDデータセット上の既存の最先端リアルタイム手法と比較して,競争性能が向上する。
論文 参考訳(メタデータ) (2023-11-20T12:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。