Inverse design of photonic surfaces on Inconel via multi-fidelity machine learning ensemble framework and high throughput femtosecond laser processing
- URL: http://arxiv.org/abs/2406.01471v1
- Date: Mon, 3 Jun 2024 15:59:19 GMT
- Title: Inverse design of photonic surfaces on Inconel via multi-fidelity machine learning ensemble framework and high throughput femtosecond laser processing
- Authors: Luka Grbcic, Minok Park, Mahmoud Elzouka, Ravi Prasher, Juliane Müller, Costas P. Grigoropoulos, Sean D. Lubner, Vassilia Zorba, Wibe Albert de Jong,
- Abstract summary: We demonstrate a multi-fidelity (MF) machine learning ensemble framework for the inverse design of photonic surfaces.
The MF ensemble combines an initial low fidelity model for generating design solutions, with a high fidelity model that refines these solutions through local optimization.
Our approach provides a powerful tool for advancing the inverse design of photonic surfaces in energy harvesting applications.
- Score: 0.6125806862740051
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We demonstrate a multi-fidelity (MF) machine learning ensemble framework for the inverse design of photonic surfaces, trained on a dataset of 11,759 samples that we fabricate using high throughput femtosecond laser processing. The MF ensemble combines an initial low fidelity model for generating design solutions, with a high fidelity model that refines these solutions through local optimization. The combined MF ensemble can generate multiple disparate sets of laser-processing parameters that can each produce the same target input spectral emissivity with high accuracy (root mean squared errors < 2%). SHapley Additive exPlanations analysis shows transparent model interpretability of the complex relationship between laser parameters and spectral emissivity. Finally, the MF ensemble is experimentally validated by fabricating and evaluating photonic surface designs that it generates for improved efficiency energy harvesting devices. Our approach provides a powerful tool for advancing the inverse design of photonic surfaces in energy harvesting applications.
Related papers
- PACE: Pacing Operator Learning to Accurate Optical Field Simulation for Complicated Photonic Devices [14.671301859745453]
Existing SOTA approaches, NeurOLight, struggle with predicting high-fidelity fields for real-world complicated photonic devices.
We propose a novel cross-axis factorized PACE operator with a strong long-distance modeling capacity.
Inspired by human learning, we conquer the simulation task for extremely hard cases into two progressively easy tasks.
arXiv Detail & Related papers (2024-11-05T22:03:14Z) - End-to-End Hybrid Refractive-Diffractive Lens Design with Differentiable Ray-Wave Model [18.183342315517244]
We propose a new hybrid ray-tracing and wave-propagation (ray-wave) model for accurate simulation of both optical aberrations and diffractive phase modulation.
The proposed ray-wave model is fully differentiable, enabling gradient back-propagation for end-to-end co-design of refractive-diffractive lens optimization and the image reconstruction network.
arXiv Detail & Related papers (2024-06-02T18:48:22Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
Most fusion methods solely focus on the fusion algorithm itself and overlook the degradation models.
We propose physics-inspired degradation models (PIDM) to model the degradation of LR-HSI and HR-MSI.
Our proposed PIDM can boost the fusion performance of existing fusion methods in practical scenarios.
arXiv Detail & Related papers (2024-02-04T09:07:28Z) - A Dual Domain Multi-exposure Image Fusion Network based on the
Spatial-Frequency Integration [57.14745782076976]
Multi-exposure image fusion aims to generate a single high-dynamic image by integrating images with different exposures.
We propose a novelty perspective on multi-exposure image fusion via the Spatial-Frequency Integration Framework, named MEF-SFI.
Our method achieves visual-appealing fusion results against state-of-the-art multi-exposure image fusion approaches.
arXiv Detail & Related papers (2023-12-17T04:45:15Z) - Hybrid-Supervised Dual-Search: Leveraging Automatic Learning for
Loss-free Multi-Exposure Image Fusion [60.221404321514086]
Multi-exposure image fusion (MEF) has emerged as a prominent solution to address the limitations of digital imaging in representing varied exposure levels.
This paper presents a Hybrid-Supervised Dual-Search approach for MEF, dubbed HSDS-MEF, which introduces a bi-level optimization search scheme for automatic design of both network structures and loss functions.
arXiv Detail & Related papers (2023-09-03T08:07:26Z) - Computational Optics for Mobile Terminals in Mass Production [17.413494778377565]
We construct the perturbed lens system model to illustrate the relationship between the system parameters and the deviated frequency response measured from photographs.
An optimization framework is proposed based on this model to build proxy cameras from the machining samples' SFRs.
Engaging with the proxy cameras, we synthetic data pairs, which encode the optical aberrations and the random manufacturing biases, for training the aberration-based algorithms.
arXiv Detail & Related papers (2023-05-10T04:17:33Z) - Diffusion Probabilistic Model Made Slim [128.2227518929644]
We introduce a customized design for slim diffusion probabilistic models (DPM) for light-weight image synthesis.
We achieve 8-18x computational complexity reduction as compared to the latent diffusion models on a series of conditional and unconditional image generation tasks.
arXiv Detail & Related papers (2022-11-27T16:27:28Z) - Machine Learning-Driven Process of Alumina Ceramics Laser Machining [0.0]
An intelligent strategy is to employ machine learning (ML) techniques to capture the relationship between picosecond laser machining parameters.
Laser parameters such as beam amplitude and frequency, scanner passing speed and the number of passes over the surface, are used for predicting the depth, top width, and bottom width of the engraved channels.
Neural Networks (NN) are the most efficient in predicting the outputs.
arXiv Detail & Related papers (2022-06-13T22:35:14Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z) - Leveraging Spatial and Photometric Context for Calibrated Non-Lambertian
Photometric Stereo [61.6260594326246]
We introduce an efficient fully-convolutional architecture that can leverage both spatial and photometric context simultaneously.
Using separable 4D convolutions and 2D heat-maps reduces the size and makes more efficient.
arXiv Detail & Related papers (2021-03-22T18:06:58Z) - Learning Inter- and Intra-frame Representations for Non-Lambertian
Photometric Stereo [14.5172791293107]
We build a two-stage Convolutional Neural Network (CNN) architecture to construct inter- and intra-frame representations.
We experimentally investigate numerous network design alternatives for identifying the optimal scheme to deploy inter-frame and intra-frame feature extraction modules.
arXiv Detail & Related papers (2020-12-26T11:22:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.