End-to-End Hybrid Refractive-Diffractive Lens Design with Differentiable Ray-Wave Model
- URL: http://arxiv.org/abs/2406.00834v1
- Date: Sun, 2 Jun 2024 18:48:22 GMT
- Title: End-to-End Hybrid Refractive-Diffractive Lens Design with Differentiable Ray-Wave Model
- Authors: Xinge Yang, Matheus Souza, Kunyi Wang, Praneeth Chakravarthula, Qiang Fu, Wolfgang Heidrich,
- Abstract summary: We propose a new hybrid ray-tracing and wave-propagation (ray-wave) model for accurate simulation of both optical aberrations and diffractive phase modulation.
The proposed ray-wave model is fully differentiable, enabling gradient back-propagation for end-to-end co-design of refractive-diffractive lens optimization and the image reconstruction network.
- Score: 18.183342315517244
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Hybrid refractive-diffractive lenses combine the light efficiency of refractive lenses with the information encoding power of diffractive optical elements (DOE), showing great potential as the next generation of imaging systems. However, accurately simulating such hybrid designs is generally difficult, and in particular, there are no existing differentiable image formation models for hybrid lenses with sufficient accuracy. In this work, we propose a new hybrid ray-tracing and wave-propagation (ray-wave) model for accurate simulation of both optical aberrations and diffractive phase modulation, where the DOE is placed between the last refractive surface and the image sensor, i.e. away from the Fourier plane that is often used as a DOE position. The proposed ray-wave model is fully differentiable, enabling gradient back-propagation for end-to-end co-design of refractive-diffractive lens optimization and the image reconstruction network. We validate the accuracy of the proposed model by comparing the simulated point spread functions (PSFs) with theoretical results, as well as simulation experiments that show our model to be more accurate than solutions implemented in commercial software packages like Zemax. We demonstrate the effectiveness of the proposed model through real-world experiments and show significant improvements in both aberration correction and extended depth-of-field (EDoF) imaging. We believe the proposed model will motivate further investigation into a wide range of applications in computational imaging, computational photography, and advanced optical design. Code will be released upon publication.
Related papers
- Quantum super-resolution microscopy by photon statistics and structured light [0.0]
We present an advanced quantum super-resolution imaging technique based on photon statistics measurement and its accurate modeling.
Our reconstruction algorithm adapts to any kind of non-Poissonian emitters, outperforming the corresponding classical SOFI method.
arXiv Detail & Related papers (2024-08-21T14:26:08Z) - Inverse design of photonic surfaces on Inconel via multi-fidelity machine learning ensemble framework and high throughput femtosecond laser processing [0.6125806862740051]
We demonstrate a multi-fidelity (MF) machine learning ensemble framework for the inverse design of photonic surfaces.
The MF ensemble combines an initial low fidelity model for generating design solutions, with a high fidelity model that refines these solutions through local optimization.
Our approach provides a powerful tool for advancing the inverse design of photonic surfaces in energy harvesting applications.
arXiv Detail & Related papers (2024-06-03T15:59:19Z) - Physics-Inspired Degradation Models for Hyperspectral Image Fusion [61.743696362028246]
Most fusion methods solely focus on the fusion algorithm itself and overlook the degradation models.
We propose physics-inspired degradation models (PIDM) to model the degradation of LR-HSI and HR-MSI.
Our proposed PIDM can boost the fusion performance of existing fusion methods in practical scenarios.
arXiv Detail & Related papers (2024-02-04T09:07:28Z) - Optical Aberration Correction in Postprocessing using Imaging Simulation [17.331939025195478]
The popularity of mobile photography continues to grow.
Recent cameras have shifted some of these correction tasks from optical design to postprocessing systems.
We propose a practical method for recovering the degradation caused by optical aberrations.
arXiv Detail & Related papers (2023-05-10T03:20:39Z) - Neural Lens Modeling [50.57409162437732]
NeuroLens is a neural lens model for distortion and vignetting that can be used for point projection and ray casting.
It can be used to perform pre-capture calibration using classical calibration targets, and can later be used to perform calibration or refinement during 3D reconstruction.
The model generalizes across many lens types and is trivial to integrate into existing 3D reconstruction and rendering systems.
arXiv Detail & Related papers (2023-04-10T20:09:17Z) - DIB-R++: Learning to Predict Lighting and Material with a Hybrid
Differentiable Renderer [78.91753256634453]
We consider the challenging problem of predicting intrinsic object properties from a single image by exploiting differentiables.
In this work, we propose DIBR++, a hybrid differentiable which supports these effects by combining specularization and ray-tracing.
Compared to more advanced physics-based differentiables, DIBR++ is highly performant due to its compact and expressive model.
arXiv Detail & Related papers (2021-10-30T01:59:39Z) - Universal and Flexible Optical Aberration Correction Using Deep-Prior
Based Deconvolution [51.274657266928315]
We propose a PSF aware plug-and-play deep network, which takes the aberrant image and PSF map as input and produces the latent high quality version via incorporating lens-specific deep priors.
Specifically, we pre-train a base model from a set of diverse lenses and then adapt it to a given lens by quickly refining the parameters.
arXiv Detail & Related papers (2021-04-07T12:00:38Z) - SIR: Self-supervised Image Rectification via Seeing the Same Scene from
Multiple Different Lenses [82.56853587380168]
We propose a novel self-supervised image rectification (SIR) method based on an important insight that the rectified results of distorted images of the same scene from different lens should be the same.
We leverage a differentiable warping module to generate the rectified images and re-distorted images from the distortion parameters.
Our method achieves comparable or even better performance than the supervised baseline method and representative state-of-the-art methods.
arXiv Detail & Related papers (2020-11-30T08:23:25Z) - Single-shot Hyperspectral-Depth Imaging with Learned Diffractive Optics [72.9038524082252]
We propose a compact single-shot monocular hyperspectral-depth (HS-D) imaging method.
Our method uses a diffractive optical element (DOE), the point spread function of which changes with respect to both depth and spectrum.
To facilitate learning the DOE, we present a first HS-D dataset by building a benchtop HS-D imager.
arXiv Detail & Related papers (2020-09-01T14:19:35Z) - Optimization of collection optics for maximum fidelity in entangled
photon sources [0.0]
decoherence sources for entangled photons created by spontaneous parametric down conversion phenomenon is studied.
The phase and spatial distinguishability of photon pairs from crystals reduce the maximum achievable entanglement fidelity.
A realistic scenario is numerically modelled, where the photon pairs with nonzero emission angle gather a phase difference.
arXiv Detail & Related papers (2020-07-14T00:48:22Z) - Learning to Model and Calibrate Optics via a Differentiable Wave Optics
Simulator [27.913052825303097]
We present a novel learning-based method to build a differentiable computational model of a real fluorescence microscope.
Our model can be used to calibrate a real optical setup directly from data samples and to engineer point spread functions by specifying the desired input-output data.
arXiv Detail & Related papers (2020-05-18T10:23:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.