DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors
- URL: http://arxiv.org/abs/2406.01476v1
- Date: Mon, 3 Jun 2024 16:05:25 GMT
- Title: DreamPhysics: Learning Physical Properties of Dynamic 3D Gaussians with Video Diffusion Priors
- Authors: Tianyu Huang, Yihan Zeng, Hui Li, Wangmeng Zuo, Rynson W. H. Lau,
- Abstract summary: We propose DreamPhysics, which estimates physical properties of 3D Gaussian Splatting with video diffusion priors.
Based on a material point method simulator with proper physical parameters, our method can generate 4D content with realistic motions.
- Score: 77.34056839349076
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dynamic 3D interaction has witnessed great interest in recent works, while creating such 4D content remains challenging. One solution is to animate 3D scenes with physics-based simulation, and the other is to learn the deformation of static 3D objects with the distillation of video generative models. The former one requires assigning precise physical properties to the target object, otherwise the simulated results would become unnatural. The latter tends to formulate the video with minor motions and discontinuous frames, due to the absence of physical constraints in deformation learning. We think that video generative models are trained with real-world captured data, capable of judging physical phenomenon in simulation environments. To this end, we propose DreamPhysics in this work, which estimates physical properties of 3D Gaussian Splatting with video diffusion priors. DreamPhysics supports both image- and text-conditioned guidance, optimizing physical parameters via score distillation sampling with frame interpolation and log gradient. Based on a material point method simulator with proper physical parameters, our method can generate 4D content with realistic motions. Experimental results demonstrate that, by distilling the prior knowledge of video diffusion models, inaccurate physical properties can be gradually refined for high-quality simulation. Codes are released at: https://github.com/tyhuang0428/DreamPhysics.
Related papers
- FreeGave: 3D Physics Learning from Dynamic Videos by Gaussian Velocity [15.375932203870594]
We aim to model 3D scene geometry, appearance, and the underlying physics purely from multi-view videos.<n>In this paper, we propose FreeGave to learn the physics of complex dynamic 3D scenes without needing any object priors.
arXiv Detail & Related papers (2025-06-09T15:31:25Z) - Layered Motion Fusion: Lifting Motion Segmentation to 3D in Egocentric Videos [71.24593306228145]
We propose to improve dynamic segmentation in 3D by fusing motion segmentation predictions from a 2D-based model into layered radiance fields.<n>We address this issue through test-time refinement, which helps the model to focus on specific frames, thereby reducing the data complexity.<n>This demonstrates that 3D techniques can enhance 2D analysis even for dynamic phenomena in a challenging and realistic setting.
arXiv Detail & Related papers (2025-06-05T19:46:48Z) - PhysMotion: Physics-Grounded Dynamics From a Single Image [24.096925413047217]
We introduce PhysMotion, a novel framework that leverages principled physics-based simulations to guide intermediate 3D representations generated from a single image and input conditions.
Our approach addresses the limitations of traditional data-driven generative models and result in more consistent physically plausible motions.
arXiv Detail & Related papers (2024-11-26T07:59:11Z) - PhysFlow: Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation [9.306758077479472]
PhysFlow is a novel approach that leverages multi-modal foundation models and video diffusion to achieve enhanced 4D dynamic scene simulation.
This integrated framework enables accurate prediction and realistic simulation of dynamic interactions in real-world scenarios.
arXiv Detail & Related papers (2024-11-21T18:55:23Z) - Automated 3D Physical Simulation of Open-world Scene with Gaussian Splatting [22.40115216094332]
We present Sim Anything, a physics-based approach that endows static 3D objects with interactive dynamics.
Inspired by human visual reasoning, we propose MLLM-based Physical Property Perception.
We also simulate objects in an open-world scene with particles sampled via the Physical-Geometric Adaptive Sampling.
arXiv Detail & Related papers (2024-11-19T12:52:21Z) - MotionGS: Exploring Explicit Motion Guidance for Deformable 3D Gaussian Splatting [56.785233997533794]
We propose a novel deformable 3D Gaussian splatting framework called MotionGS.
MotionGS explores explicit motion priors to guide the deformation of 3D Gaussians.
Experiments in the monocular dynamic scenes validate that MotionGS surpasses state-of-the-art methods.
arXiv Detail & Related papers (2024-10-10T08:19:47Z) - PhysGen: Rigid-Body Physics-Grounded Image-to-Video Generation [29.831214435147583]
We present PhysGen, a novel image-to-video generation method.
It produces a realistic, physically plausible, and temporally consistent video.
Our key insight is to integrate model-based physical simulation with a data-driven video generation process.
arXiv Detail & Related papers (2024-09-27T17:59:57Z) - Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
We propose textbfPhysics3D, a novel method for learning various physical properties of 3D objects through a video diffusion model.
Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model.
Experiments demonstrate the effectiveness of our method with both elastic and plastic materials.
arXiv Detail & Related papers (2024-06-06T17:59:47Z) - PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation [62.53760963292465]
PhysDreamer is a physics-based approach that endows static 3D objects with interactive dynamics.
We present our approach on diverse examples of elastic objects and evaluate the realism of the synthesized interactions through a user study.
arXiv Detail & Related papers (2024-04-19T17:41:05Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
We propose a self-supervised method to jointly learn 3D motion and depth from monocular videos.
Our system contains a depth estimation module to predict depth, and a new decomposed object-wise 3D motion (DO3D) estimation module to predict ego-motion and 3D object motion.
Our model delivers superior performance in all evaluated settings.
arXiv Detail & Related papers (2024-03-09T12:22:46Z) - Learning 3D Particle-based Simulators from RGB-D Videos [15.683877597215494]
We propose a method for learning simulators directly from observations.
Visual Particle Dynamics (VPD) jointly learns a latent particle-based representation of 3D scenes.
Unlike existing 2D video prediction models, VPD's 3D structure enables scene editing and long-term predictions.
arXiv Detail & Related papers (2023-12-08T20:45:34Z) - NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos [82.74918564737591]
We present a method for learning 3D geometry and physics parameters of a dynamic scene from only a monocular RGB video input.
Experiments show that our method achieves superior mesh and video reconstruction of dynamic scenes compared to competing Neural Field approaches.
arXiv Detail & Related papers (2022-10-22T04:57:55Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
Existing deep models predict 2D and 3D kinematic poses from video that are approximately accurate, but contain visible errors.
We present a physics-based method for inferring 3D human motion from video sequences that takes initial 2D and 3D pose estimates as input.
arXiv Detail & Related papers (2020-07-22T21:09:11Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
Key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation.
This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences.
arXiv Detail & Related papers (2020-04-30T19:35:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.