DreamPhysics: Learning Physics-Based 3D Dynamics with Video Diffusion Priors
- URL: http://arxiv.org/abs/2406.01476v3
- Date: Wed, 18 Dec 2024 13:47:38 GMT
- Title: DreamPhysics: Learning Physics-Based 3D Dynamics with Video Diffusion Priors
- Authors: Tianyu Huang, Haoze Zhang, Yihan Zeng, Zhilu Zhang, Hui Li, Wangmeng Zuo, Rynson W. H. Lau,
- Abstract summary: We propose to learn the physical properties of a material field with video diffusion priors.
We then utilize a physics-based Material-Point-Method simulator to generate 4D content with realistic motions.
- Score: 75.83647027123119
- License:
- Abstract: Dynamic 3D interaction has been attracting a lot of attention recently. However, creating such 4D content remains challenging. One solution is to animate 3D scenes with physics-based simulation, which requires manually assigning precise physical properties to the object or the simulated results would become unnatural. Another solution is to learn the deformation of 3D objects with the distillation of video generative models, which, however, tends to produce 3D videos with small and discontinuous motions due to the inappropriate extraction and application of physics priors. In this work, to combine the strengths and complementing shortcomings of the above two solutions, we propose to learn the physical properties of a material field with video diffusion priors, and then utilize a physics-based Material-Point-Method (MPM) simulator to generate 4D content with realistic motions. In particular, we propose motion distillation sampling to emphasize video motion information during distillation. In addition, to facilitate the optimization, we further propose a KAN-based material field with frame boosting. Experimental results demonstrate that our method enjoys more realistic motions than state-of-the-arts do.
Related papers
- PhysMotion: Physics-Grounded Dynamics From a Single Image [24.096925413047217]
We introduce PhysMotion, a novel framework that leverages principled physics-based simulations to guide intermediate 3D representations generated from a single image and input conditions.
Our approach addresses the limitations of traditional data-driven generative models and result in more consistent physically plausible motions.
arXiv Detail & Related papers (2024-11-26T07:59:11Z) - Phys4DGen: A Physics-Driven Framework for Controllable and Efficient 4D Content Generation from a Single Image [3.131272328696594]
Existing methods rely heavily on pre-trained video diffusion models to guide 4D content dynamics.
We propose Phys4DGen, a novel framework that generates physics-compliant 4D content from a single image.
Inspired by the human ability to infer physical properties visually, we introduce a Physical Perception Module.
arXiv Detail & Related papers (2024-11-25T12:12:38Z) - Automated 3D Physical Simulation of Open-world Scene with Gaussian Splatting [22.40115216094332]
We present Sim Anything, a physics-based approach that endows static 3D objects with interactive dynamics.
Inspired by human visual reasoning, we propose MLLM-based Physical Property Perception.
We also simulate objects in an open-world scene with particles sampled via the Physical-Geometric Adaptive Sampling.
arXiv Detail & Related papers (2024-11-19T12:52:21Z) - Physics3D: Learning Physical Properties of 3D Gaussians via Video Diffusion [35.71595369663293]
We propose textbfPhysics3D, a novel method for learning various physical properties of 3D objects through a video diffusion model.
Our approach involves designing a highly generalizable physical simulation system based on a viscoelastic material model.
Experiments demonstrate the effectiveness of our method with both elastic and plastic materials.
arXiv Detail & Related papers (2024-06-06T17:59:47Z) - PhysDreamer: Physics-Based Interaction with 3D Objects via Video Generation [62.53760963292465]
PhysDreamer is a physics-based approach that endows static 3D objects with interactive dynamics.
We present our approach on diverse examples of elastic objects and evaluate the realism of the synthesized interactions through a user study.
arXiv Detail & Related papers (2024-04-19T17:41:05Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
We propose a self-supervised method to jointly learn 3D motion and depth from monocular videos.
Our system contains a depth estimation module to predict depth, and a new decomposed object-wise 3D motion (DO3D) estimation module to predict ego-motion and 3D object motion.
Our model delivers superior performance in all evaluated settings.
arXiv Detail & Related papers (2024-03-09T12:22:46Z) - NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos [82.74918564737591]
We present a method for learning 3D geometry and physics parameters of a dynamic scene from only a monocular RGB video input.
Experiments show that our method achieves superior mesh and video reconstruction of dynamic scenes compared to competing Neural Field approaches.
arXiv Detail & Related papers (2022-10-22T04:57:55Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
Existing deep models predict 2D and 3D kinematic poses from video that are approximately accurate, but contain visible errors.
We present a physics-based method for inferring 3D human motion from video sequences that takes initial 2D and 3D pose estimates as input.
arXiv Detail & Related papers (2020-07-22T21:09:11Z) - Occlusion resistant learning of intuitive physics from videos [52.25308231683798]
Key ability for artificial systems is to understand physical interactions between objects, and predict future outcomes of a situation.
This ability, often referred to as intuitive physics, has recently received attention and several methods were proposed to learn these physical rules from video sequences.
arXiv Detail & Related papers (2020-04-30T19:35:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.