Quantum many-body spin ratchets
- URL: http://arxiv.org/abs/2406.01571v2
- Date: Thu, 26 Sep 2024 10:17:45 GMT
- Title: Quantum many-body spin ratchets
- Authors: Lenart Zadnik, Marko Ljubotina, Žiga Krajnik, Enej Ilievski, Tomaž Prosen,
- Abstract summary: We show that breaking of space-reflection symmetry results in a drift in the dynamical spin susceptibility.
We also show that the scaled cumulant generating function of the time-integrated current instead obeys a generalized fluctuation relation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Introducing a class of SU(2) invariant quantum unitary circuits generating chiral transport, we examine the role of broken space-reflection and time-reversal symmetries on spin transport properties. Upon adjusting parameters of local unitary gates, the dynamics can be either chaotic or integrable. The latter corresponds to a generalization of the space-time discretized (Trotterized) higher-spin quantum Heisenberg chain. We demonstrate that breaking of space-reflection symmetry results in a drift in the dynamical spin susceptibility. Remarkably, we find a universal drift velocity given by a simple formula which, at zero average magnetization, depends only on the values of SU(2) Casimir invariants associated with local spins. In the integrable case, the drift velocity formula is confirmed analytically based on the exact solution of thermodynamic Bethe ansatz equations. Finally, by inspecting the large fluctuations of the time-integrated current between two halves of the system in stationary maximum-entropy states, we demonstrate violation of the Gallavotti-Cohen symmetry, implying that such states cannot be regarded as equilibrium ones. We show that the scaled cumulant generating function of the time-integrated current instead obeys a generalized fluctuation relation.
Related papers
- Real-time dynamics of false vacuum decay [49.1574468325115]
We investigate false vacuum decay of a relativistic scalar field in the metastable minimum of an asymmetric double-well potential.
We employ the non-perturbative framework of the two-particle irreducible (2PI) quantum effective action at next-to-leading order in a large-N expansion.
arXiv Detail & Related papers (2023-10-06T12:44:48Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Distinct universality classes of diffusive transport from full counting
statistics [0.4014524824655105]
We study the full counting statistics of spin transport in various integrable and non-integrable anisotropic one-dimensional spin models.
We find that spin transport, while diffusive on average, is governed by a distinct non-Gaussian universality class.
Our predictions can directly be tested in experiments using quantum gas microscopes or superconducting qubit arrays.
arXiv Detail & Related papers (2022-03-17T18:00:01Z) - Quantum-Fluid Correspondence in Relativistic Fluids with Spin: From Madelung Form to Gravitational Coupling [0.0]
We show that the inclusion of spin introduces a quantum correction to the classical fluid energy.
We extend the formalism to a relativistic perfect fluid, identifying the system's stress-energy-momentum tensor.
This theoretical framework offers potential applications for studying fluid-like systems with internal rotational degrees of freedom.
arXiv Detail & Related papers (2022-02-18T03:08:49Z) - Simultaneous Transport Evolution for Minimax Equilibria on Measures [48.82838283786807]
Min-max optimization problems arise in several key machine learning setups, including adversarial learning and generative modeling.
In this work we focus instead in finding mixed equilibria, and consider the associated lifted problem in the space of probability measures.
By adding entropic regularization, our main result establishes global convergence towards the global equilibrium.
arXiv Detail & Related papers (2022-02-14T02:23:16Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Entanglement and charge-sharpening transitions in U(1) symmetric
monitored quantum circuits [1.1968749490556412]
We study how entanglement dynamics in non-unitary quantum circuits can be enriched in the presence of charge conservation.
We uncover a charge-sharpening transition that separates different scrambling phases with volume-law scaling of entanglement.
We find that while R'enyi entropies grow sub-ballistically as $sqrttt$ in the absence of measurement, for even an infinitesimal rate of measurements, all average R'enyi entropies grow ballistically with time.
arXiv Detail & Related papers (2021-07-21T18:00:13Z) - Stochastic Path Integral Analysis of the Continuously Monitored Quantum
Harmonic Oscillator [0.0]
We deduce the evolution equations for position and momentum expectation values and the covariance matrix elements from the system's characteristic function.
Our results provide insights into the time dependence of the system during the measurement process, motivating their importance for quantum measurement engine/refrigerator experiments.
arXiv Detail & Related papers (2021-03-10T15:04:49Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - Symmetries and conserved quantities of boundary time crystals in
generalized spin models [0.0]
We investigate how symmetries and conserved quantities relate to the occurrence of the boundary time crystal phase in a generalized spin model with Lindblad dissipation.
Our results suggest that these two elements may be general requirements for the observation of a stable BTC phase relating symmetries and conserved quantities in arbitrary spin models.
arXiv Detail & Related papers (2021-01-14T16:36:08Z) - New approach to describe two coupled spins in a variable magnetic field [55.41644538483948]
We describe the evolution of two spins coupled by hyperfine interaction in an external time-dependent magnetic field.
We modify the time-dependent Schr"odinger equation through a change of representation.
The solution is highly simplified when an adiabatically varying magnetic field perturbs the system.
arXiv Detail & Related papers (2020-11-23T17:29:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.