Quantum-Fluid Correspondence in Relativistic Fluids with Spin: From Madelung Form to Gravitational Coupling
- URL: http://arxiv.org/abs/2202.08999v2
- Date: Mon, 30 Sep 2024 05:11:37 GMT
- Title: Quantum-Fluid Correspondence in Relativistic Fluids with Spin: From Madelung Form to Gravitational Coupling
- Authors: Naoki Sato,
- Abstract summary: We show that the inclusion of spin introduces a quantum correction to the classical fluid energy.
We extend the formalism to a relativistic perfect fluid, identifying the system's stress-energy-momentum tensor.
This theoretical framework offers potential applications for studying fluid-like systems with internal rotational degrees of freedom.
- Score: 0.0
- License:
- Abstract: This paper explores the quantum-fluid correspondence in a charged relativistic fluid with intrinsic spin. We begin by examining the nonrelativistic case, showing that the inclusion of spin introduces a quantum correction to the classical fluid energy. This correction, coupled with Maxwell's equations, naturally leads to the Schr\"odinger equation in Madelung form. Building on this foundation, we extend the formalism to a relativistic perfect fluid, identifying the system's stress-energy-momentum tensor. Our analysis reveals that the trace of the quantum correction to this tensor corresponds to the energy density of an oscillator, with its frequency determined by the vorticity of the spin motion. We then use the stress-energy-momentum tensor to establish the relationship between the Ricci scalar curvature, as dictated by the Einstein field equations, and the fluid density in a static, spherically symmetric configuration. Lastly, we generalize the Madelung transformation to compressible Navier-Stokes flows with vorticity and viscosity by developing a tailored Clebsch representation of the velocity field. This theoretical framework offers potential applications for studying fluid-like systems with internal rotational degrees of freedom, commonly encountered in astrophysical settings.
Related papers
- Integral quantization based on the Heisenberg-Weyl group [39.58317527488534]
We develop a framework of integral quantization applied to the motion of spinless particles in the four-dimensional Minkowski spacetime.
The proposed scheme is based on coherent states generated by the action of the Heisenberg-Weyl group.
A direct application of our model, including a computation of transition amplitudes between states characterized by fixed positions and momenta, is postponed to a forthcoming article.
arXiv Detail & Related papers (2024-10-31T14:36:38Z) - Quantum many-body spin ratchets [0.0]
We show that breaking of space-reflection symmetry results in a drift in the dynamical spin susceptibility.
We also show that the scaled cumulant generating function of the time-integrated current instead obeys a generalized fluctuation relation.
arXiv Detail & Related papers (2024-06-03T17:51:36Z) - Unveiling the Quantum Toroidal Dipole in Nanosystems: Quantization,
Interaction Energy, and Measurement [44.99833362998488]
We investigate a quantum particle confined to a toroidal surface in the presence of a filiform current along the system's rotational axis.
Our analysis reveals that the interaction between the particle and the current induces a non-zero toroidal dipole in the particle's stationary states.
arXiv Detail & Related papers (2024-01-26T13:31:32Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - Directional scrambling of quantum information in helical multiferroics [0.0]
Local excitations as carriers of quantum information spread out in the system in ways governed by the underlying interaction and symmetry.
Character and direction dependence of quantum scrambling can be inferred from the out-of-time-ordered commutators.
We study and quantify the directionality of quantum information propagation in oxide-based helical spin systems.
arXiv Detail & Related papers (2021-12-20T17:58:19Z) - Quantum kinetic theory of flux-carrying Brownian particles [0.0]
We develop the kinetic theory of the flux-carrying Brownian motion recently introduced in the context of open quantum systems.
This model constitutes an effective description of two-dimensional dissipative particles violating both time-reversal and parity.
arXiv Detail & Related papers (2021-10-29T09:54:53Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - From non-equilibrium Green's functions to quantum master equations for
the density matrix and out-of-time-order correlators: steady state and
adiabatic dynamics [0.0]
We consider a finite quantum system under slow driving and weakly coupled to thermal reservoirs at different temperatures.
We formulate the equations ruling the dynamics of these quantities by recourse to the Schwinger-Keldysh non-equilibrium Green's function formalism.
We illustrate the formalism in the case of a qutrit coupled to bosonic reservoirs and of a pair of interacting quantum dots attached to fermionic reservoirs.
arXiv Detail & Related papers (2021-03-07T15:15:22Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Holonomy and vortex structures in quantum hydrodynamics [0.0]
We consider a new geometric approach to Madelung's quantum hydrodynamics (QHD) based on the theory of gauge connections.
In particular, our treatment comprises a constant curvature thereby endowing QHD with intrinsic non-zero holonomy.
arXiv Detail & Related papers (2020-03-19T10:28:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.