Generalization and Stability of Interpolating Neural Networks with
Minimal Width
- URL: http://arxiv.org/abs/2302.09235v2
- Date: Mon, 27 Mar 2023 21:00:54 GMT
- Title: Generalization and Stability of Interpolating Neural Networks with
Minimal Width
- Authors: Hossein Taheri, Christos Thrampoulidis
- Abstract summary: We investigate the generalization and optimization of shallow neural-networks trained by gradient in the interpolating regime.
We prove the training loss number minimizations $m=Omega(log4 (n))$ neurons and neurons $Tapprox n$.
With $m=Omega(log4 (n))$ neurons and $Tapprox n$, we bound the test loss training by $tildeO (1/)$.
- Score: 37.908159361149835
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate the generalization and optimization properties of shallow
neural-network classifiers trained by gradient descent in the interpolating
regime. Specifically, in a realizable scenario where model weights can achieve
arbitrarily small training error $\epsilon$ and their distance from
initialization is $g(\epsilon)$, we demonstrate that gradient descent with $n$
training data achieves training error $O(g(1/T)^2 /T)$ and generalization error
$O(g(1/T)^2 /n)$ at iteration $T$, provided there are at least
$m=\Omega(g(1/T)^4)$ hidden neurons. We then show that our realizable setting
encompasses a special case where data are separable by the model's neural
tangent kernel. For this and logistic-loss minimization, we prove the training
loss decays at a rate of $\tilde O(1/ T)$ given polylogarithmic number of
neurons $m=\Omega(\log^4 (T))$. Moreover, with $m=\Omega(\log^{4} (n))$ neurons
and $T\approx n$ iterations, we bound the test loss by $\tilde{O}(1/n)$. Our
results differ from existing generalization outcomes using the
algorithmic-stability framework, which necessitate polynomial width and yield
suboptimal generalization rates. Central to our analysis is the use of a new
self-bounded weak-convexity property, which leads to a generalized local
quasi-convexity property for sufficiently parameterized neural-network
classifiers. Eventually, despite the objective's non-convexity, this leads to
convergence and generalization-gap bounds that resemble those found in the
convex setting of linear logistic regression.
Related papers
- Stable Minima Cannot Overfit in Univariate ReLU Networks: Generalization by Large Step Sizes [29.466981306355066]
We show that gradient descent with a fixed learning rate $eta$ can only find local minima that represent smooth functions.
We also prove a nearly-optimal MSE bound of $widetildeO(n-4/5)$ within the strict interior of the support of the $n$ data points.
arXiv Detail & Related papers (2024-06-10T22:57:27Z) - Neural network learns low-dimensional polynomials with SGD near the information-theoretic limit [75.4661041626338]
We study the problem of gradient descent learning of a single-index target function $f_*(boldsymbolx) = textstylesigma_*left(langleboldsymbolx,boldsymbolthetarangleright)$ under isotropic Gaussian data.
We prove that a two-layer neural network optimized by an SGD-based algorithm learns $f_*$ of arbitrary link function with a sample and runtime complexity of $n asymp T asymp C(q) cdot d
arXiv Detail & Related papers (2024-06-03T17:56:58Z) - Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks [54.177130905659155]
Recent studies show that a reproducing kernel Hilbert space (RKHS) is not a suitable space to model functions by neural networks.
In this paper, we study a suitable function space for over- parameterized two-layer neural networks with bounded norms.
arXiv Detail & Related papers (2024-04-29T15:04:07Z) - A Unified Framework for Uniform Signal Recovery in Nonlinear Generative
Compressed Sensing [68.80803866919123]
Under nonlinear measurements, most prior results are non-uniform, i.e., they hold with high probability for a fixed $mathbfx*$ rather than for all $mathbfx*$ simultaneously.
Our framework accommodates GCS with 1-bit/uniformly quantized observations and single index models as canonical examples.
We also develop a concentration inequality that produces tighter bounds for product processes whose index sets have low metric entropy.
arXiv Detail & Related papers (2023-09-25T17:54:19Z) - Neural Networks Efficiently Learn Low-Dimensional Representations with
SGD [22.703825902761405]
We show that SGD-trained ReLU NNs can learn a single-index target of the form $y=f(langleboldsymbolu,boldsymbolxrangle) + epsilon$ by recovering the principal direction.
We also provide compress guarantees for NNs using the approximate low-rank structure produced by SGD.
arXiv Detail & Related papers (2022-09-29T15:29:10Z) - Bounding the Width of Neural Networks via Coupled Initialization -- A
Worst Case Analysis [121.9821494461427]
We show how to significantly reduce the number of neurons required for two-layer ReLU networks.
We also prove new lower bounds that improve upon prior work, and that under certain assumptions, are best possible.
arXiv Detail & Related papers (2022-06-26T06:51:31Z) - Beyond Lazy Training for Over-parameterized Tensor Decomposition [69.4699995828506]
We show that gradient descent on over-parametrized objective could go beyond the lazy training regime and utilize certain low-rank structure in the data.
Our results show that gradient descent on over-parametrized objective could go beyond the lazy training regime and utilize certain low-rank structure in the data.
arXiv Detail & Related papers (2020-10-22T00:32:12Z) - Large-time asymptotics in deep learning [0.0]
We consider the impact of the final time $T$ (which may indicate the depth of a corresponding ResNet) in training.
For the classical $L2$--regularized empirical risk minimization problem, we show that the training error is at most of the order $mathcalOleft(frac1Tright)$.
In the setting of $ellp$--distance losses, we prove that both the training error and the optimal parameters are at most of the order $mathcalOleft(e-mu
arXiv Detail & Related papers (2020-08-06T07:33:17Z) - The Interpolation Phase Transition in Neural Networks: Memorization and
Generalization under Lazy Training [10.72393527290646]
We study phenomena in the context of two-layers neural networks in the neural tangent (NT) regime.
We prove that as soon as $Ndgg n$, the test error is well approximated by one of kernel ridge regression with respect to the infinite-width kernel.
The latter is in turn well approximated by the error ridge regression, whereby the regularization parameter is increased by a self-induced' term related to the high-degree components of the activation function.
arXiv Detail & Related papers (2020-07-25T01:51:13Z) - Learning Over-Parametrized Two-Layer ReLU Neural Networks beyond NTK [58.5766737343951]
We consider the dynamic of descent for learning a two-layer neural network.
We show that an over-parametrized two-layer neural network can provably learn with gradient loss at most ground with Tangent samples.
arXiv Detail & Related papers (2020-07-09T07:09:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.