Detecting Deceptive Dark Patterns in E-commerce Platforms
- URL: http://arxiv.org/abs/2406.01608v1
- Date: Mon, 27 May 2024 16:32:40 GMT
- Title: Detecting Deceptive Dark Patterns in E-commerce Platforms
- Authors: Arya Ramteke, Sankalp Tembhurne, Gunesh Sonawane, Ratnmala N. Bhimanpallewar,
- Abstract summary: Dark patterns are deceptive user interfaces employed by e-commerce websites to manipulate user's behavior in a way that benefits the website, often unethically.
Existing solutions include UIGuard, which uses computer vision and natural language processing, and approaches that categorize dark patterns based on detectability or utilize machine learning models trained on datasets.
We propose combining web scraping techniques with fine-tuned BERT language models and generative capabilities to identify dark patterns, including outliers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dark patterns are deceptive user interfaces employed by e-commerce websites to manipulate user's behavior in a way that benefits the website, often unethically. This study investigates the detection of such dark patterns. Existing solutions include UIGuard, which uses computer vision and natural language processing, and approaches that categorize dark patterns based on detectability or utilize machine learning models trained on datasets. We propose combining web scraping techniques with fine-tuned BERT language models and generative capabilities to identify dark patterns, including outliers. The approach scrapes textual content, feeds it into the BERT model for detection, and leverages BERT's bidirectional analysis and generation abilities. The study builds upon research on automatically detecting and explaining dark patterns, aiming to raise awareness and protect consumers.
Related papers
- Model Pairing Using Embedding Translation for Backdoor Attack Detection on Open-Set Classification Tasks [63.269788236474234]
We propose to use model pairs on open-set classification tasks for detecting backdoors.
We show that this score, can be an indicator for the presence of a backdoor despite models being of different architectures.
This technique allows for the detection of backdoors on models designed for open-set classification tasks, which is little studied in the literature.
arXiv Detail & Related papers (2024-02-28T21:29:16Z) - Why is the User Interface a Dark Pattern? : Explainable Auto-Detection
and its Analysis [1.4474137122906163]
Dark patterns are deceptive user interface designs for online services that make users behave in unintended ways.
We study interpretable dark pattern auto-detection, that is, why a particular user interface is detected as having dark patterns.
Our findings may prevent users from being manipulated by dark patterns, and aid in the construction of more equitable internet services.
arXiv Detail & Related papers (2023-12-30T03:53:58Z) - Reverse-Engineering Decoding Strategies Given Blackbox Access to a
Language Generation System [73.52878118434147]
We present methods to reverse-engineer the decoding method used to generate text.
Our ability to discover which decoding strategy was used has implications for detecting generated text.
arXiv Detail & Related papers (2023-09-09T18:19:47Z) - Unleashing Mask: Explore the Intrinsic Out-of-Distribution Detection
Capability [70.72426887518517]
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications.
We propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data.
Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them.
arXiv Detail & Related papers (2023-06-06T14:23:34Z) - Mask and Restore: Blind Backdoor Defense at Test Time with Masked
Autoencoder [57.739693628523]
We propose a framework for blind backdoor defense with Masked AutoEncoder (BDMAE)
BDMAE detects possible triggers in the token space using image structural similarity and label consistency between the test image and MAE restorations.
Our approach is blind to the model restorations, trigger patterns and image benignity.
arXiv Detail & Related papers (2023-03-27T19:23:33Z) - AidUI: Toward Automated Recognition of Dark Patterns in User Interfaces [6.922187804798161]
UI dark patterns can lead end-users toward (unknowingly) taking actions that they may not have intended.
We introduce AidUI, a novel approach that uses computer vision and natural language processing techniques to recognize ten unique UI dark patterns.
AidUI achieves an overall precision of 0.66, recall of 0.67, F1-score of 0.65 in detecting dark pattern instances, and is able to localize detected patterns with an IoU score of 0.84.
arXiv Detail & Related papers (2023-03-12T23:46:04Z) - Unlearnable Clusters: Towards Label-agnostic Unlearnable Examples [128.25509832644025]
There is a growing interest in developing unlearnable examples (UEs) against visual privacy leaks on the Internet.
UEs are training samples added with invisible but unlearnable noise, which have been found can prevent unauthorized training of machine learning models.
We present a novel technique called Unlearnable Clusters (UCs) to generate label-agnostic unlearnable examples with cluster-wise perturbations.
arXiv Detail & Related papers (2022-12-31T04:26:25Z) - Dark patterns in e-commerce: a dataset and its baseline evaluations [0.14680035572775535]
We constructed a dataset for dark pattern detection with state-of-the-art machine learning methods.
As a result of 5-fold cross-validation, we achieved the highest accuracy of 0.975 with RoBERTa.
arXiv Detail & Related papers (2022-11-12T01:53:49Z) - Automated detection of dark patterns in cookie banners: how to do it
poorly and why it is hard to do it any other way [7.2834950390171205]
A dataset of cookie banners of 300 news websites was used to train a prediction model that does exactly that.
The accuracy of the trained model is promising, but allows a lot of room for improvement.
We provide an in-depth analysis of the interdisciplinary challenges that automated dark pattern detection poses to artificial intelligence.
arXiv Detail & Related papers (2022-04-21T12:10:27Z) - Software Vulnerability Detection via Deep Learning over Disaggregated
Code Graph Representation [57.92972327649165]
This work explores a deep learning approach to automatically learn the insecure patterns from code corpora.
Because code naturally admits graph structures with parsing, we develop a novel graph neural network (GNN) to exploit both the semantic context and structural regularity of a program.
arXiv Detail & Related papers (2021-09-07T21:24:36Z) - TextDecepter: Hard Label Black Box Attack on Text Classifiers [0.0]
We present a novel approach for hard-label black-box attacks against Natural Language Processing (NLP) classifiers.
Such an attack scenario applies to real-world black-box models being used for security-sensitive applications such as sentiment analysis and toxic content detection.
arXiv Detail & Related papers (2020-08-16T08:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.