論文の概要: FinEmbedDiff: A Cost-Effective Approach of Classifying Financial Documents with Vector Sampling using Multi-modal Embedding Models
- arxiv url: http://arxiv.org/abs/2406.01618v1
- Date: Tue, 28 May 2024 16:34:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-09 15:49:54.104536
- Title: FinEmbedDiff: A Cost-Effective Approach of Classifying Financial Documents with Vector Sampling using Multi-modal Embedding Models
- Title(参考訳): FinEmbedDiff:マルチモーダル埋め込みモデルを用いたベクトルサンプリングによる財務文書分類の費用効果
- Authors: Anjanava Biswas, Wrick Talukdar,
- Abstract要約: FinEmbedDiffは、財務文書を分類するための費用効率の良いベクトルサンプリング手法である。
最先端のベースラインと比較して、競争力のある分類精度を達成する。
これは現実の金融アプリケーションのための実用的でスケーラブルなソリューションです。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Accurate classification of multi-modal financial documents, containing text, tables, charts, and images, is crucial but challenging. Traditional text-based approaches often fail to capture the complex multi-modal nature of these documents. We propose FinEmbedDiff, a cost-effective vector sampling method that leverages pre-trained multi-modal embedding models to classify financial documents. Our approach generates multi-modal embedding vectors for documents, and compares new documents with pre-computed class embeddings using vector similarity measures. Evaluated on a large dataset, FinEmbedDiff achieves competitive classification accuracy compared to state-of-the-art baselines while significantly reducing computational costs. The method exhibits strong generalization capabilities, making it a practical and scalable solution for real-world financial applications.
- Abstract(参考訳): テキスト、表、チャート、画像を含むマルチモーダル財務文書の正確な分類は極めて重要であるが、難しい。
従来のテキストベースのアプローチは、これらの文書の複雑なマルチモーダルな性質を捉えるのに失敗することが多い。
本研究では,FinEmbedDiffを提案する。FinEmbedDiffは,事前学習したマルチモーダル埋め込みモデルを利用して財務文書を分類する,コスト効率の高いベクトルサンプリング手法である。
提案手法は,文書に対するマルチモーダル埋め込みベクトルを生成し,ベクトル類似度を用いた事前計算されたクラス埋め込みと比較する。
大規模なデータセットに基づいて評価したFinEmbedDiffは、最先端のベースラインと比較して、競合する分類精度を実現し、計算コストを大幅に削減する。
この方法は強力な一般化能力を示し、現実の金融アプリケーションにとって実用的でスケーラブルなソリューションである。
関連論文リスト
- Multimodality Helps Few-Shot 3D Point Cloud Semantic Segmentation [61.91492500828508]
FS-PCS (Few-shot 3D point cloud segmentation) は、最小のサポートサンプルで新しいカテゴリを分割するモデルを一般化することを目的としている。
本稿では,テキストラベルと潜在的に利用可能な2次元画像モダリティを利用して,コストフリーのマルチモーダルFS-PCSセットアップを提案する。
トレーニングバイアスを軽減するため,テスト時間適応型クロスモーダルセグ(TACC)技術を提案する。
論文 参考訳(メタデータ) (2024-10-29T19:28:41Z) - Out-of-Distribution Detection with Attention Head Masking for Multimodal Document Classification [3.141006099594433]
本稿では,文書分類システムにおける多モードOODタスクに対するアテンションヘッドマスキング(AHM)と呼ばれる新しい手法を提案する。
実験により,提案手法がすべての最先端手法より優れていることを示す。
高品質な公開可能なドキュメントデータセットの不足に対処するために、新しいドキュメントAIデータセットであるFunderDocsを紹介します。
論文 参考訳(メタデータ) (2024-08-20T23:30:00Z) - Advancing Anomaly Detection: Non-Semantic Financial Data Encoding with LLMs [49.57641083688934]
本稿では,Large Language Models (LLM) 埋め込みを用いた財務データにおける異常検出の新しい手法を提案する。
実験により,LLMが異常検出に有用な情報をもたらし,モデルがベースラインを上回っていることが確認された。
論文 参考訳(メタデータ) (2024-06-05T20:19:09Z) - Towards a Foundation Purchasing Model: Pretrained Generative
Autoregression on Transaction Sequences [0.0]
本稿では,金融取引の文脈的埋め込みを得るための生成事前学習手法を提案する。
さらに,510億の取引を含む180の発行銀行のデータコーパスを用いて,埋め込みモデルの大規模事前学習を行う。
論文 参考訳(メタデータ) (2024-01-03T09:32:48Z) - mPLUG-PaperOwl: Scientific Diagram Analysis with the Multimodal Large
Language Model [73.38800189095173]
本研究はマルチモーダルLLMのマルチモーダルダイアグラム解析機能を強化することに焦点を当てる。
高品質な論文のLatexソースファイルを解析することにより、マルチモーダルなダイアグラム理解データセットM-Paperを慎重に構築する。
M-Paperは、画像やラテックス符号のフォーマットの数字や表を含む、複数の科学的図の合同理解をサポートする最初のデータセットである。
論文 参考訳(メタデータ) (2023-11-30T04:43:26Z) - UniDoc: A Universal Large Multimodal Model for Simultaneous Text
Detection, Recognition, Spotting and Understanding [93.92313947913831]
テキスト検出と認識機能を備えた新しいマルチモーダルモデルUniDocを紹介する。
我々の知る限りでは、これはテキストの検出、認識、スポッティング、理解を同時に行うことができる最初の大規模マルチモーダルモデルである。
論文 参考訳(メタデータ) (2023-08-19T17:32:34Z) - $\textit{latent}$-GLAT: Glancing at Latent Variables for Parallel Text
Generation [65.29170569821093]
並列テキスト生成は、ジェネレーション効率の成功により、広く注目を集めています。
本稿では,単語分類情報を取得するために,離散潜在変数を用いた$textitlatent$-GLATを提案する。
実験結果から,本手法は自己回帰モデルを用いることなく,強いベースラインを達成できることが示唆された。
論文 参考訳(メタデータ) (2022-04-05T07:34:12Z) - Efficient Classification of Long Documents Using Transformers [13.927622630633344]
様々なベースラインと多様なデータセットに対して測定された相対的有効性を評価する。
結果として、より複雑なモデルは、単純なベースラインを上回り、データセット間で一貫性のないパフォーマンスを得ることができないことがしばしば示される。
論文 参考訳(メタデータ) (2022-03-21T18:36:18Z) - Sparse Fusion for Multimodal Transformers [7.98117428941095]
Sparse Fusion Transformers (SFT) は, トランスの新しい多モード融合法である。
我々のアイデアの鍵は、モダリティ間のモデリングに先立って単調なトークンセットを減らすスパースプールブロックである。
最新の性能は、同様の実験条件下で複数のベンチマークで得られ、計算コストとメモリ要求の最大6倍の削減を報告している。
論文 参考訳(メタデータ) (2021-11-23T16:43:49Z) - Multi-Vector Models with Textual Guidance for Fine-Grained Scientific
Document Similarity [11.157086694203201]
本稿では, 微粒な面のマッチングに基づく新しい科学的文書類似性モデルを提案する。
本モデルは,テキスト管理の新たな形態として,関連論文の側面を記述した共引用文脈を用いて学習する。
論文 参考訳(メタデータ) (2021-11-16T11:12:30Z) - Single-Modal Entropy based Active Learning for Visual Question Answering [75.1682163844354]
視覚質問応答(VQA)のマルチモーダル設定におけるアクティブラーニングに対処する
マルチモーダルな入力,画像,質問を考慮し,有効サンプル取得のための新しい手法を提案する。
私たちの新しいアイデアは、実装が簡単で、コスト効率が高く、他のマルチモーダルタスクにも容易に適応できます。
論文 参考訳(メタデータ) (2021-10-21T05:38:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。