RecDiff: Diffusion Model for Social Recommendation
- URL: http://arxiv.org/abs/2406.01629v1
- Date: Sat, 1 Jun 2024 10:20:52 GMT
- Title: RecDiff: Diffusion Model for Social Recommendation
- Authors: Zongwei Li, Lianghao Xia, Chao Huang,
- Abstract summary: We propose a novel diffusion-based social denoising framework for recommendation (RecDiff)
By performing multi-step noise diffusion and removal, RecDiff possesses a robust ability to identify and eliminate noise from encoded user representations.
The results demonstrate its superiority in terms of recommendation accuracy, training efficiency, and denoising effectiveness.
- Score: 14.514770044236375
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social recommendation has emerged as a powerful approach to enhance personalized recommendations by leveraging the social connections among users, such as following and friend relations observed in online social platforms. The fundamental assumption of social recommendation is that socially-connected users exhibit homophily in their preference patterns. This means that users connected by social ties tend to have similar tastes in user-item activities, such as rating and purchasing. However, this assumption is not always valid due to the presence of irrelevant and false social ties, which can contaminate user embeddings and adversely affect recommendation accuracy. To address this challenge, we propose a novel diffusion-based social denoising framework for recommendation (RecDiff). Our approach utilizes a simple yet effective hidden-space diffusion paradigm to alleivate the noisy effect in the compressed and dense representation space. By performing multi-step noise diffusion and removal, RecDiff possesses a robust ability to identify and eliminate noise from the encoded user representations, even when the noise levels vary. The diffusion module is optimized in a downstream task-aware manner, thereby maximizing its ability to enhance the recommendation process. We conducted extensive experiments to evaluate the efficacy of our framework, and the results demonstrate its superiority in terms of recommendation accuracy, training efficiency, and denoising effectiveness. The source code for the model implementation is publicly available at: https://github.com/HKUDS/RecDiff.
Related papers
- Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences [7.552217586057245]
We propose a simulation framework that mimics user-recommender system interactions in a long-term scenario.
We introduce two novel metrics for quantifying the algorithm's impact on user preferences, specifically in terms of drift over time.
arXiv Detail & Related papers (2024-09-24T21:54:22Z) - Bridging User Dynamics: Transforming Sequential Recommendations with Schrödinger Bridge and Diffusion Models [49.458914600467324]
We introduce the Schr"odinger Bridge into diffusion-based sequential recommendation models, creating the SdifRec model.
We also propose an extended version of SdifRec called con-SdifRec, which utilizes user clustering information as a guiding condition.
arXiv Detail & Related papers (2024-08-30T09:10:38Z) - Balancing User Preferences by Social Networks: A Condition-Guided Social Recommendation Model for Mitigating Popularity Bias [64.73474454254105]
Social recommendation models weave social interactions into their design to provide uniquely personalized recommendation results for users.
Existing social recommendation models fail to address the issues of popularity bias and the redundancy of social information.
We propose a Condition-Guided Social Recommendation Model (named CGSoRec) to mitigate the model's popularity bias.
arXiv Detail & Related papers (2024-05-27T02:45:01Z) - Decoding the Silent Majority: Inducing Belief Augmented Social Graph
with Large Language Model for Response Forecasting [74.68371461260946]
SocialSense is a framework that induces a belief-centered graph on top of an existent social network, along with graph-based propagation to capture social dynamics.
Our method surpasses existing state-of-the-art in experimental evaluations for both zero-shot and supervised settings.
arXiv Detail & Related papers (2023-10-20T06:17:02Z) - IDVT: Interest-aware Denoising and View-guided Tuning for Social Recommendation [25.499653256726926]
Socially connected users are assumed to share similar preferences, enhancing recommendation accuracy and addressing cold start issues.
Our statistical analysis indicates a significant amount of noise in the social network, where many socially connected users do not share common interests.
We propose an innovative underlineInterest-aware underlineDenoising and underlineView-guided underlineTuning (IDVT) method for the social recommendation.
arXiv Detail & Related papers (2023-08-30T10:03:55Z) - Disentangled Contrastive Learning for Social Recommendation [28.606016662435117]
Social recommendations utilize social relations to enhance the representation learning for recommendations.
We propose a novel Disentangled contrastive learning framework for social Recommendations DcRec.
arXiv Detail & Related papers (2022-08-18T09:15:18Z) - Probabilistic and Variational Recommendation Denoising [56.879165033014026]
Learning from implicit feedback is one of the most common cases in the application of recommender systems.
We propose probabilistic and variational recommendation denoising for implicit feedback.
We employ the proposed DPI and DVAE on four state-of-the-art recommendation models and conduct experiments on three datasets.
arXiv Detail & Related papers (2021-05-20T08:59:44Z) - DiffNet++: A Neural Influence and Interest Diffusion Network for Social
Recommendation [50.08581302050378]
Social recommendation has emerged to leverage social connections among users for predicting users' unknown preferences.
We propose a preliminary work of a neural influence diffusion network (i.e., DiffNet) for social recommendation (Diffnet)
In this paper, we propose DiffNet++, an improved algorithm of Diffnet that models the neural influence diffusion and interest diffusion in a unified framework.
arXiv Detail & Related papers (2020-01-15T08:45:34Z) - A Soft Recommender System for Social Networks [1.8275108630751844]
Recent social recommender systems benefit from friendship graph to make an accurate recommendation.
We went a step further to identify true friends for making even more realistic recommendations.
We calculated the similarity between users, as well as the dependency between a user and an item.
arXiv Detail & Related papers (2020-01-08T13:38:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.