Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences
- URL: http://arxiv.org/abs/2409.16478v1
- Date: Tue, 24 Sep 2024 21:54:22 GMT
- Title: Algorithmic Drift: A Simulation Framework to Study the Effects of Recommender Systems on User Preferences
- Authors: Erica Coppolillo, Simone Mungari, Ettore Ritacco, Francesco Fabbri, Marco Minici, Francesco Bonchi, Giuseppe Manco,
- Abstract summary: We propose a simulation framework that mimics user-recommender system interactions in a long-term scenario.
We introduce two novel metrics for quantifying the algorithm's impact on user preferences, specifically in terms of drift over time.
- Score: 7.552217586057245
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Digital platforms such as social media and e-commerce websites adopt Recommender Systems to provide value to the user. However, the social consequences deriving from their adoption are still unclear. Many scholars argue that recommenders may lead to detrimental effects, such as bias-amplification deriving from the feedback loop between algorithmic suggestions and users' choices. Nonetheless, the extent to which recommenders influence changes in users leaning remains uncertain. In this context, it is important to provide a controlled environment for evaluating the recommendation algorithm before deployment. To address this, we propose a stochastic simulation framework that mimics user-recommender system interactions in a long-term scenario. In particular, we simulate the user choices by formalizing a user model, which comprises behavioral aspects, such as the user resistance towards the recommendation algorithm and their inertia in relying on the received suggestions. Additionally, we introduce two novel metrics for quantifying the algorithm's impact on user preferences, specifically in terms of drift over time. We conduct an extensive evaluation on multiple synthetic datasets, aiming at testing the robustness of our framework when considering different scenarios and hyper-parameters setting. The experimental results prove that the proposed methodology is effective in detecting and quantifying the drift over the users preferences by means of the simulation. All the code and data used to perform the experiments are publicly available.
Related papers
- Quantifying User Coherence: A Unified Framework for Cross-Domain Recommendation Analysis [69.37718774071793]
This paper introduces novel information-theoretic measures for understanding recommender systems.
We evaluate 7 recommendation algorithms across 9 datasets, revealing the relationships between our measures and standard performance metrics.
arXiv Detail & Related papers (2024-10-03T13:02:07Z) - CSRec: Rethinking Sequential Recommendation from A Causal Perspective [25.69446083970207]
The essence of sequential recommender systems (RecSys) lies in understanding how users make decisions.
We propose a novel formulation of sequential recommendation, termed Causal Sequential Recommendation (CSRec)
CSRec aims to predict the probability of a recommended item's acceptance within a sequential context and backtrack how current decisions are made.
arXiv Detail & Related papers (2024-08-23T23:19:14Z) - Latent User Intent Modeling for Sequential Recommenders [92.66888409973495]
Sequential recommender models learn to predict the next items a user is likely to interact with based on his/her interaction history on the platform.
Most sequential recommenders however lack a higher-level understanding of user intents, which often drive user behaviors online.
Intent modeling is thus critical for understanding users and optimizing long-term user experience.
arXiv Detail & Related papers (2022-11-17T19:00:24Z) - Breaking Feedback Loops in Recommender Systems with Causal Inference [99.22185950608838]
Recent work has shown that feedback loops may compromise recommendation quality and homogenize user behavior.
We propose the Causal Adjustment for Feedback Loops (CAFL), an algorithm that provably breaks feedback loops using causal inference.
We show that CAFL improves recommendation quality when compared to prior correction methods.
arXiv Detail & Related papers (2022-07-04T17:58:39Z) - Estimating and Penalizing Induced Preference Shifts in Recommender
Systems [10.052697877248601]
We argue that system designers should: estimate the shifts a recommender would induce; evaluate whether such shifts would be undesirable; and even actively optimize to avoid problematic shifts.
We do this by using historical user interaction data to train predictive user model which implicitly contains their preference dynamics.
In simulated experiments, we show that our learned preference dynamics model is effective in estimating user preferences and how they would respond to new recommenders.
arXiv Detail & Related papers (2022-04-25T21:04:46Z) - Modeling Dynamic User Preference via Dictionary Learning for Sequential
Recommendation [133.8758914874593]
Capturing the dynamics in user preference is crucial to better predict user future behaviors because user preferences often drift over time.
Many existing recommendation algorithms -- including both shallow and deep ones -- often model such dynamics independently.
This paper considers the problem of embedding a user's sequential behavior into the latent space of user preferences.
arXiv Detail & Related papers (2022-04-02T03:23:46Z) - Detecting and Quantifying Malicious Activity with Simulation-based
Inference [61.9008166652035]
We show experiments in malicious user identification using a model of regular and malicious users interacting with a recommendation algorithm.
We provide a novel simulation-based measure for quantifying the effects of a user or group of users on its dynamics.
arXiv Detail & Related papers (2021-10-06T03:39:24Z) - Probabilistic and Variational Recommendation Denoising [56.879165033014026]
Learning from implicit feedback is one of the most common cases in the application of recommender systems.
We propose probabilistic and variational recommendation denoising for implicit feedback.
We employ the proposed DPI and DVAE on four state-of-the-art recommendation models and conduct experiments on three datasets.
arXiv Detail & Related papers (2021-05-20T08:59:44Z) - Learning User Preferences in Non-Stationary Environments [42.785926822853746]
We introduce a novel model for online non-stationary recommendation systems.
We show that our algorithm outperforms other static algorithms even when preferences do not change over time.
arXiv Detail & Related papers (2021-01-29T10:26:16Z) - Measuring Recommender System Effects with Simulated Users [19.09065424910035]
Popularity bias and filter bubbles are two of the most well-studied recommender system biases.
We offer a simulation framework for measuring the impact of a recommender system under different types of user behavior.
arXiv Detail & Related papers (2021-01-12T14:51:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.