論文の概要: TinySV: Speaker Verification in TinyML with On-device Learning
- arxiv url: http://arxiv.org/abs/2406.01655v1
- Date: Mon, 3 Jun 2024 17:27:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 21:21:41.818930
- Title: TinySV: Speaker Verification in TinyML with On-device Learning
- Title(参考訳): TinySV: デバイス上での学習によるTinyMLの話者検証
- Authors: Massimo Pavan, Gioele Mombelli, Francesco Sinacori, Manuel Roveri,
- Abstract要約: 本稿では,提案した TextitTiny Speaker Verification (TinySV) などのタスクで使用可能な,新しいタイプの適応型TinyMLソリューションを提案する。
提案したTinySVソリューションは、キーワードスポッティングと適応話者検証モジュールで構成される2層階層のTinyMLソリューションに依存している。
我々は,提案したTinySVソリューションの有効性と有効性を評価し,提案したソリューションを実世界のIoTデバイス上でテストした。
- 参考スコア(独自算出の注目度): 2.356162747014486
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: TinyML is a novel area of machine learning that gained huge momentum in the last few years thanks to the ability to execute machine learning algorithms on tiny devices (such as Internet-of-Things or embedded systems). Interestingly, research in this area focused on the efficient execution of the inference phase of TinyML models on tiny devices, while very few solutions for on-device learning of TinyML models are available in the literature due to the relevant overhead introduced by the learning algorithms. The aim of this paper is to introduce a new type of adaptive TinyML solution that can be used in tasks, such as the presented \textit{Tiny Speaker Verification} (TinySV), that require to be tackled with an on-device learning algorithm. Achieving this goal required (i) reducing the memory and computational demand of TinyML learning algorithms, and (ii) designing a TinyML learning algorithm operating with few and possibly unlabelled training data. The proposed TinySV solution relies on a two-layer hierarchical TinyML solution comprising Keyword Spotting and Adaptive Speaker Verification module. We evaluated the effectiveness and efficiency of the proposed TinySV solution on a dataset collected expressly for the task and tested the proposed solution on a real-world IoT device (Infineon PSoC 62S2 Wi-Fi BT Pioneer Kit).
- Abstract(参考訳): TinyMLは、小さなデバイス(Internet-of-Thingsや組み込みシステムなど)で機械学習アルゴリズムを実行する能力のおかげで、ここ数年で大きな勢いを増した、機械学習の新たな領域である。
興味深いことに、この分野での研究は、TinyMLモデルの推論フェーズを小さなデバイスで効率的に実行することに焦点を当てている。
本研究の目的は、デバイス上での学習アルゴリズムに対処する必要のある、提示された \textit{Tiny Speaker Verification} (TinySV) のようなタスクで使用できる新しいタイプの適応型TinyMLソリューションを導入することである。
この目標を達成するには
i)TinyML学習アルゴリズムのメモリと計算要求の低減、及び
(2)TinyML学習アルゴリズムの設計。
提案したTinySVソリューションは、キーワードスポッティングと適応話者検証モジュールで構成される2層階層のTinyMLソリューションに依存している。
Infineon PSoC 62S2 Wi-Fi BT Pioneer Kit(PSOC 62S2 Wi-Fi BT Pioneer Kit)を用いて,提案手法の有効性と効率を評価した。
関連論文リスト
- A Continual and Incremental Learning Approach for TinyML On-device Training Using Dataset Distillation and Model Size Adaption [0.4345992906143838]
Tiny Machine Learning (TinyML) の文脈における漸進学習のための新しいアルゴリズムを提案する。
低性能でエネルギー効率のよい組み込みデバイスに最適化されている。
提案アルゴリズムは,組込みデバイス上でのTinyMLインクリメンタル学習に有望なアプローチを提供することを示す。
論文 参考訳(メタデータ) (2024-09-11T09:02:33Z) - On-device Online Learning and Semantic Management of TinyML Systems [8.183732025472766]
本研究の目的は,単一TinyMLモデルのプロトタイピングと信頼性の高いTinyMLシステムの開発のギャップを埋めることである。
我々は,制約のあるデバイス上でのトレーニングを可能にするオンライン学習を提案し,最新のフィールド条件に局所モデルを適用する。
モデルとデバイスを大規模に管理するためのセマンティックマネジメントを提案する。
論文 参考訳(メタデータ) (2024-05-13T10:03:34Z) - Limits of Transformer Language Models on Learning to Compose Algorithms [77.2443883991608]
我々は,LLaMAモデルのトレーニングと,複数の個別サブタスクの合成学習を必要とする4つのタスクにおけるGPT-4とGeminiの促進について検討した。
その結果,現在最先端のTransformer言語モデルにおける構成学習は,非常に非効率なサンプルであることが示唆された。
論文 参考訳(メタデータ) (2024-02-08T16:23:29Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
我々は,SimulMTタスクに大規模言語モデルを適用する可能性を検討する。
MUST-Cデータセットと異なる9言語でtextttLlama2-7b-chatモデルを用いて実験を行った。
その結果,LLM は BLEU と LAAL の指標で専用MT モデルよりも優れていた。
論文 参考訳(メタデータ) (2023-09-13T04:06:47Z) - The Devil is in the Errors: Leveraging Large Language Models for
Fine-grained Machine Translation Evaluation [93.01964988474755]
AutoMQMは,大規模な言語モデルに対して,翻訳におけるエラーの識別と分類を求めるプロンプト技術である。
テキスト内学習と微調整によるラベル付きデータの影響について検討する。
次に, PaLM-2モデルを用いてAutoMQMを評価し, スコアのプロンプトよりも性能が向上することがわかった。
論文 参考訳(メタデータ) (2023-08-14T17:17:21Z) - TinyMetaFed: Efficient Federated Meta-Learning for TinyML [8.940139322528829]
TinyMLに適したモデルに依存しないメタラーニングフレームワークであるTinyMetaFedを紹介する。
TinyMetaFedはニューラルネットワークの協調トレーニングを支援する。
部分的な局所的な再構築とトッププラスの選択的なコミュニケーションを通じて、コミュニケーションの節約とプライバシ保護を提供する。
論文 参考訳(メタデータ) (2023-07-13T15:39:26Z) - TinyReptile: TinyML with Federated Meta-Learning [9.618821589196624]
メタラーニングとオンラインラーニングにインスパイアされた,シンプルだが効率的なアルゴリズムであるTinyReptileを提案する。
Raspberry Pi 4とCortex-M4 MCUで256KBのRAMでTinyReptileをデモした。
論文 参考訳(メタデータ) (2023-04-11T13:11:10Z) - Intelligence at the Extreme Edge: A Survey on Reformable TinyML [0.0]
分離が容易な新しい分類法の提案により,改良可能なTinyMLソリューションに関する調査を行った。
TinyMLのワークフローを調査し、特定されたデプロイメントスキームと利用可能なベンチマークツールを分析します。
論文 参考訳(メタデータ) (2022-04-02T09:53:36Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
音節や音素を含む言語単位に基づくLSTMに基づく新しい生成音声LMを提案する。
限られたデータセットでは、現代の生成モデルで要求されるものよりも桁違いに小さいので、我々のモデルはバブリング音声を近似する。
補助的なテキストLM,マルチタスク学習目標,補助的な調音特徴を用いた訓練の効果を示す。
論文 参考訳(メタデータ) (2021-10-31T22:48:30Z) - VolcanoML: Speeding up End-to-End AutoML via Scalable Search Space
Decomposition [57.06900573003609]
VolcanoMLは、大規模なAutoML検索スペースを小さなものに分解するフレームワークである。
最新のデータベースシステムでサポートされているような、Volcanoスタイルの実行モデルをサポートしている。
評価の結果,VolcanoMLは,AutoMLにおける検索空間分解の表現性を向上するだけでなく,分解戦略の実際の発見につながることが示された。
論文 参考訳(メタデータ) (2021-07-19T13:23:57Z) - Memory-Based Optimization Methods for Model-Agnostic Meta-Learning and
Personalized Federated Learning [56.17603785248675]
モデルに依存しないメタラーニング (MAML) が人気のある研究分野となっている。
既存のMAMLアルゴリズムは、イテレーション毎にメタモデルを更新するためにいくつかのタスクとデータポイントをサンプリングすることで、エピソードのアイデアに依存している。
本稿では,MAMLのメモリベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-06-09T08:47:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。