Prethermal Time-Crystalline Corner Modes
- URL: http://arxiv.org/abs/2406.01686v1
- Date: Mon, 3 Jun 2024 18:00:02 GMT
- Title: Prethermal Time-Crystalline Corner Modes
- Authors: Si Jiang, Dong Yuan, Wenjie Jiang, Dong-Ling Deng, Francisco Machado,
- Abstract summary: We demonstrate the existence of prethermal discrete time crystals whose sub-harmonic response is entirely localized to zero-dimensional corner modes.
We show that the robustness of these corner modes arises from two related, yet distinct mechanisms.
- Score: 12.933457165598128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate the existence of prethermal discrete time crystals whose sub-harmonic response is entirely localized to zero-dimensional corner modes. Within the exponentially long prethermal regime, we show that the robustness of these corner modes arises from two related, yet distinct mechanisms: the presence of a higher-order symmetry-protected topological phase in the effective Hamiltonian, or the emergence of a dynamical constraint that prevents the decay of the corner mode. While the first mechanism ensures the stability of the sub-harmonic response throughout the entirety of the prethermal regime, it is restricted to initial states in the ground state manifold of the effective Hamiltonian. By contrast, the second mechanism enables the observation of the prethermal time-crystalline order for arbitrary initial states, albeit with a time scale that is not only determined by the frequency of the drive, but also the relative energy scale across the system's sublattices. We characterize these two mechanisms by simulating the dynamics of a periodically driven two-dimensional spin model, and discuss natural extensions of our model to all other dimensions.
Related papers
- Non-equilibrium thermodynamics of gravitational objective-collapse models [0.0]
We investigate the entropy production in the Di'osi-Penrose (DP) model, one of the most extensively studied gravity-related collapse mechanisms.
Our findings reveal that the original DP model induces heating, producing dynamics consistent with the Second Law of thermodynamics.
In contrast, its dissipative extension achieves physically consistent thermalization in the regime of low dissipation strength.
arXiv Detail & Related papers (2025-02-05T13:47:41Z) - Observation of topological prethermal strong zero modes [22.83041640256683]
We report the observation of a distinct type of topological edge modes, which are protected by emergent symmetries.
In particular, we observe robust long-lived topological edge modes over up to 30 cycles at a wide range of temperatures.
Our results establish a viable digital simulation approach to experimentally exploring a variety of finite-temperature topological phases.
arXiv Detail & Related papers (2025-01-08T18:52:02Z) - The Closed and Open Unbalanced Dicke Trimer Model: Critical Properties
and Nonlinear Semiclassical Dynamics [5.824077816472029]
We study a generalization of the recently introduced Dicke trimer model.
In the extreme unbalanced limit, the symmetry of the Tavis-Cummings model is restored.
We observe the emergence of nonequilibrium phases characterized by trivial and non-trivial dynamical signatures.
arXiv Detail & Related papers (2023-03-21T11:23:18Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Quantum chaos and thermalization in the two-mode Dicke model [77.34726150561087]
We discuss the onset of quantum chaos and thermalization in the two-mode Dicke model.
The two-mode Dicke model exhibits normal to superradiant quantum phase transition.
We show that the temporal fluctuations of the expectation value of the collective spin observable around its average are small and decrease with the effective system size.
arXiv Detail & Related papers (2022-07-08T11:16:29Z) - Subradiant edge states in an atom chain with waveguide-mediated hopping [0.0]
We analyze a system formed by two chains of identical emitters coupled to a waveguide, whose guided modes induce excitation hopping.
We find that, in the single excitation limit, the bulk topological properties of the Hamiltonian that describes the coherent dynamics of the system are identical to the ones of a one-dimensional Su-Schrieffer-Heeger model.
We analytically identify parameter regimes where edge states arise which are fully localized to the boundaries of the chain, independently of the system size.
arXiv Detail & Related papers (2022-05-27T09:35:49Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Clean two-dimensional Floquet time-crystal [68.8204255655161]
We consider the two-dimensional quantum Ising model, in absence of disorder, subject to periodic imperfect global spin flips.
We show by a combination of exact diagonalization and tensor-network methods that the system can sustain a spontaneously broken discrete time-translation symmetry.
We observe a non-perturbative change in the decay rate of the order parameter, which is related to the long-lived stability of the magnetic domains in 2D.
arXiv Detail & Related papers (2022-05-10T13:04:43Z) - Long-lived period-doubled edge modes of interacting and disorder-free
Floquet spin chains [68.8204255655161]
We show that even in the absence of disorder, and in the presence of bulk heating, $pi$ edge modes are long lived.
A tunneling estimate for the lifetime is obtained by mapping the stroboscopic time-evolution to dynamics of a single particle in Krylov subspace.
arXiv Detail & Related papers (2021-05-28T12:13:14Z) - Floquet Phases of Matter via Classical Prethermalization [0.0]
We show that classical many-body systems can host nonequilibrium phases of matter.
We numerically demonstrate the existence of classical prethermal time crystals in systems with different dimensionalities.
arXiv Detail & Related papers (2021-04-28T18:00:00Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.