Non-equilibrium thermodynamics of gravitational objective-collapse models
- URL: http://arxiv.org/abs/2502.03173v1
- Date: Wed, 05 Feb 2025 13:47:41 GMT
- Title: Non-equilibrium thermodynamics of gravitational objective-collapse models
- Authors: Simone Artini, Gabriele Lo Monaco, Sandro Donadi, Mauro Paternostro,
- Abstract summary: We investigate the entropy production in the Di'osi-Penrose (DP) model, one of the most extensively studied gravity-related collapse mechanisms.
Our findings reveal that the original DP model induces heating, producing dynamics consistent with the Second Law of thermodynamics.
In contrast, its dissipative extension achieves physically consistent thermalization in the regime of low dissipation strength.
- Score: 0.0
- License:
- Abstract: We investigate the entropy production in the Di\'osi-Penrose (DP) model, one of the most extensively studied gravity-related collapse mechanisms, and one of its dissipative extensions. To this end, we analyze the behavior of a single harmonic oscillator, subjected to such collapse mechanisms, focusing on its phase-space dynamics and the time evolution of the entropy production rate, a central quantity in non-equilibrium thermodynamics. Our findings reveal that the original DP model induces unbounded heating, producing dynamics consistent with the Second Law of thermodynamics only under the assumption of an infinite-temperature noise field. In contrast, its dissipative extension achieves physically consistent thermalization in the regime of low dissipation strength. We further our study to address the complete dynamics of the dissipative extension, thus including explicitly non-Gaussian features in the state of the system that lack from the low-dissipation regime, using a short-time approach.
Related papers
- Prethermal Time-Crystalline Corner Modes [12.933457165598128]
We demonstrate the existence of prethermal discrete time crystals whose sub-harmonic response is entirely localized to zero-dimensional corner modes.
We show that the robustness of these corner modes arises from two related, yet distinct mechanisms.
arXiv Detail & Related papers (2024-06-03T18:00:02Z) - Synchronization-induced violation of thermodynamic uncertainty relations [0.0]
We explore the possibility that TURs are violated, particularly for quantum systems, leading to accurate currents at lower cost.
Our results pave the way for the use of synchronization in the thermodynamics of precision.
arXiv Detail & Related papers (2024-04-25T18:00:03Z) - Characterizing the spontaneous collapse of a wavefunction through
entropy production [0.0]
We investigate the phenomenology leading to the non-conservation of energy of the continuous spontaneous localization (CSL) model.
We use such framework to assess the equilibration process entailed by the dissipative formulation of the model (dCSL)
We show that the CSL model violates Clausius law, as it exhibits a negative entropy production rate.
arXiv Detail & Related papers (2023-10-19T12:10:52Z) - Thermodynamic entropy production in the dynamical Casimir effect [0.0]
We study a quantum field confined within a one-dimensional ideal cavity.
The central question is how the thermodynamic entropy of the field evolves over time.
arXiv Detail & Related papers (2023-09-14T16:41:28Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Fast Thermalization from the Eigenstate Thermalization Hypothesis [69.68937033275746]
Eigenstate Thermalization Hypothesis (ETH) has played a major role in understanding thermodynamic phenomena in closed quantum systems.
This paper establishes a rigorous link between ETH and fast thermalization to the global Gibbs state.
Our results explain finite-time thermalization in chaotic open quantum systems.
arXiv Detail & Related papers (2021-12-14T18:48:31Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Master equations for Wigner functions with spontaneous collapse and
their relation to thermodynamic irreversibility [0.0]
Wigner functions, allowing for a reformulation of quantum mechanics in phase space, are of central importance for the study of the quantum-classical transition.
We derive the dynamic equations for the four most important spontaneous collapse models.
We use the phase-space form of GRW theory to test, via molecular dynamics simulations, David Albert's suggestion that the masterity induced by spontaneous collapses is responsible for the emergence of thermodynamic irreversibility.
arXiv Detail & Related papers (2021-05-31T23:08:21Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.