論文の概要: An approximation-based approach versus an AI one for the study of CT images of abdominal aorta aneurysms
- arxiv url: http://arxiv.org/abs/2406.01764v1
- Date: Mon, 3 Jun 2024 20:11:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 21:02:09.569875
- Title: An approximation-based approach versus an AI one for the study of CT images of abdominal aorta aneurysms
- Title(参考訳): 腹部大動脈瘤CT像に対する近似的アプローチとAI的アプローチ
- Authors: Lucrezia Rinelli, Arianna Travaglini, Nicolò Vescera, Gianluca Vinti,
- Abstract要約: 腹部大動脈瘤のCT像に対する2つのアプローチについて検討した。
決定論的アプローチは関東ロビッチ作用素のサンプリングと背景理論を採用し、これらの演算子の画像への再構成と拡張能力を活用している。
人工知能ベースのアプローチは、U-netニューラルネットワークに基づいている。
- 参考スコア(独自算出の注目度): 0.3374875022248866
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study evaluates two approaches applied to computed tomography (CT) images of patients with abdominal aortic aneurysm: one deterministic, based on tools of Approximation Theory, and one based on Artificial Intelligence. Both aim to segment the basal CT images to extract the patent area of the aortic vessel, in order to propose an alternative to nephrotoxic contrast agents for diagnosing this pathology. While the deterministic approach employs sampling Kantorovich operators and the theory behind, leveraging the reconstruction and enhancement capabilities of these operators applied to images, the artificial intelligence-based approach lays on a U-net neural network. The results obtained from testing the two methods have been compared numerically and visually to assess their performances, demonstrating that both models yield accurate results.
- Abstract(参考訳): 本研究は,腹部大動脈瘤のCT像に応用した2つのアプローチについて検討した。
両者とも,大動脈の特許領域を抽出するために基底CT像を分割することを目的としており,この病理診断のための腎毒性造影剤の代替案を提案する。
決定論的アプローチは、カントロビッチ作用素のサンプリングと背景理論を採用し、これらの演算子の画像への再構成と拡張能力を活用する一方で、人工知能ベースのアプローチは、U-netニューラルネットワークに基づいている。
2つの手法の試験から得られた結果は数値的および視覚的に比較され、両モデルが正確な結果が得られることを示した。
関連論文リスト
- Synthetic CT image generation from CBCT: A Systematic Review [44.01505745127782]
深層学習法を用いたコーンビームCT(CBCT)データから合成CT(sCT)画像を生成することは,放射線腫瘍学における重要な進歩である。
sCT 生成における深層学習アプローチの頻度を明らかにするため,35 件の関連研究を同定,解析した。
論文 参考訳(メタデータ) (2025-01-22T13:54:07Z) - IBO: Inpainting-Based Occlusion to Enhance Explainable Artificial Intelligence Evaluation in Histopathology [1.9440228513607511]
Inpainting-Based Occlusion (IBO) は,Denoising Diffusion Probabilistic Model を利用した新しい手法である。
まず,学習された知覚的イメージパッチ類似度(LPIPS)測定値を用いて知覚的類似性を評価するとともに,AUC分析によるモデル予測への影響を定量化する。
論文 参考訳(メタデータ) (2024-08-29T09:57:55Z) - Harmonizing Pathological and Normal Pixels for Pseudo-healthy Synthesis [68.5287824124996]
そこで本研究では,新しいタイプの識別器であるセグメンタを提案し,病変の正確な特定と擬似健康画像の視覚的品質の向上を図っている。
医用画像強調に生成画像を適用し,低コントラスト問題に対処するために拡張結果を利用する。
BraTSのT2モダリティに関する総合的な実験により、提案手法は最先端の手法よりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-03-29T08:41:17Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
我々は,多チャンネル畳み込み解析演算子学習法(MCAOL)を開発した。
本研究では,低エネルギー,高エネルギーで減衰画像を共同で再構成する最適化手法を提案する。
論文 参考訳(メタデータ) (2022-03-10T14:22:54Z) - Incremental Cross-view Mutual Distillation for Self-supervised Medical
CT Synthesis [88.39466012709205]
本稿では,スライス間の分解能を高めるために,新しい医療スライスを構築した。
臨床実践において, 根本・中間医療スライスは常に欠落していることを考慮し, 相互蒸留の段階的相互蒸留戦略を導入する。
提案手法は,最先端のアルゴリズムよりも明確なマージンで優れる。
論文 参考訳(メタデータ) (2021-12-20T03:38:37Z) - Symmetry-Enhanced Attention Network for Acute Ischemic Infarct
Segmentation with Non-Contrast CT Images [50.55978219682419]
急性虚血性梗塞セグメンテーションのための対称性増強型注意ネットワーク(SEAN)を提案する。
提案するネットワークは、入力されたCT画像を、脳組織が左右対称な標準空間に自動的に変換する。
提案したSEANは、ダイス係数と梗塞局所化の両方の観点から、対称性に基づく最先端の手法より優れている。
論文 参考訳(メタデータ) (2021-10-11T07:13:26Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Automatic Breast Lesion Classification by Joint Neural Analysis of
Mammography and Ultrasound [1.9814912982226993]
そこで本研究では,乳がん病変を各乳腺造影像および超音波画像から分類する深層学習法を提案する。
提案されたアプローチは、GoogleNetアーキテクチャに基づいており、データのために2つのトレーニングステップで微調整されています。
AUCは0.94で、単一のモダリティで訓練された最先端のモデルより優れている。
論文 参考訳(メタデータ) (2020-09-23T09:08:24Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z) - A Deep Learning-Based Method for Automatic Segmentation of Proximal
Femur from Quantitative Computed Tomography Images [5.731199807877257]
我々は、エンドツーエンドの完全畳み込みニューラルネットワーク(CNN)であるV on-Netに基づく3次元画像分割法を開発した。
提案手法の有効性を評価する実験を行った。
論文 参考訳(メタデータ) (2020-06-09T21:16:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。