Variational quantum state preparation for quantum-enhanced metrology in noisy systems
- URL: http://arxiv.org/abs/2406.01859v2
- Date: Wed, 24 Jul 2024 23:49:33 GMT
- Title: Variational quantum state preparation for quantum-enhanced metrology in noisy systems
- Authors: Juan C. Zuñiga Castro, Jeffrey Larson, Sri Hari Krishna Narayanan, Victor E. Colussi, Michael A. Perlin, Robert J. Lewis-Swan,
- Abstract summary: We simulate a low-depth variational quantum circuit (VQC) composed of a sequence of global rotations and entangling operations applied to a chain of qubits subject to dephasing noise.
We find that regardless of the details of the entangling operation implemented in the VQC, the optimal quantum states can be broadly classified into a trio of qualitative regimes.
Our findings are relevant for designing optimal state-preparation strategies for next-generation quantum sensors exploiting entanglement.
- Score: 0.7652747219811168
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate optimized quantum state preparation for quantum metrology applications in noisy environments. Using the QFI-Opt package, we simulate a low-depth variational quantum circuit (VQC) composed of a sequence of global rotations and entangling operations applied to a chain of qubits that are subject to dephasing noise. The parameters controlling the VQC are numerically optimized to maximize the quantum Fisher information, which characterizes the ultimate metrological sensitivity of a quantum state with respect to a global rotation. We find that regardless of the details of the entangling operation implemented in the VQC, the optimal quantum states can be broadly classified into a trio of qualitative regimes--cat-like, squeezed-like, and product states--associated with different dephasing rates. Our findings are relevant for designing optimal state-preparation strategies for next-generation quantum sensors exploiting entanglement, such as time and frequency standards and magnetometers, aimed at achieving state-of-the-art performance in the presence of noise and decoherence.
Related papers
- Entanglement-enhanced optimal quantum metrology [0.7373617024876725]
We propose a QOC scheme for QM that leverages entanglement and optimized coupling interactions with an ancillary system to provide enhanced metrological performance.
Our findings indicate that, in certain situations, schemes employing coherent control of a single particle are severely limited.
arXiv Detail & Related papers (2024-11-06T16:08:13Z) - Optimal Quantum Purity Amplification [2.05170973574812]
Quantum purity amplification (QPA) offers a novel approach to counteract the pervasive noise that degrades quantum states.
We present the optimal QPA protocol for general quantum systems against global depolarizing noise.
Our findings suggest that QPA could improve the performance of quantum information processing tasks.
arXiv Detail & Related papers (2024-09-26T17:46:00Z) - Diffusion-Inspired Quantum Noise Mitigation in Parameterized Quantum Circuits [10.073911279652918]
We study the relationship between the quantum noise and the diffusion model.
We propose a novel diffusion-inspired learning approach to mitigate the quantum noise in the PQCs.
arXiv Detail & Related papers (2024-06-02T19:35:38Z) - Quantum control by the environment: Turing uncomputability, Optimization over Stiefel manifolds, Reachable sets, and Incoherent GRAPE [56.47577824219207]
In many practical situations, the controlled quantum systems are open, interacting with the environment.
In this note, we briefly review some results on control of open quantum systems using environment as a resource.
arXiv Detail & Related papers (2024-03-20T10:09:13Z) - Variational Quantum Eigensolvers with Quantum Gaussian Filters for solving ground-state problems in quantum many-body systems [2.5425769156210896]
We present a novel quantum algorithm for approximating the ground-state in quantum many-body systems.
Our approach integrates Variational Quantum Eigensolvers (VQE) with Quantum Gaussian Filters (QGF)
Our method shows improved convergence speed and accuracy, particularly under noisy conditions.
arXiv Detail & Related papers (2024-01-24T14:01:52Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Identification of topological phases using classically-optimized
variational quantum eigensolver [0.6181093777643575]
Variational quantum eigensolver (VQE) is regarded as a promising candidate of hybrid quantum-classical algorithm for quantum computers.
We propose classically-optimized VQE (co-VQE), where the whole process of the optimization is efficiently conducted on a classical computer.
In co-VQE, we only use quantum computers to measure nonlocal quantities after the parameters are optimized.
arXiv Detail & Related papers (2022-02-07T02:26:58Z) - Dynamical learning of a photonics quantum-state engineering process [48.7576911714538]
Experimentally engineering high-dimensional quantum states is a crucial task for several quantum information protocols.
We implement an automated adaptive optimization protocol to engineer photonic Orbital Angular Momentum (OAM) states.
This approach represents a powerful tool for automated optimizations of noisy experimental tasks for quantum information protocols and technologies.
arXiv Detail & Related papers (2022-01-14T19:24:31Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.