Entanglement-enhanced optimal quantum metrology
- URL: http://arxiv.org/abs/2411.04022v1
- Date: Wed, 06 Nov 2024 16:08:13 GMT
- Title: Entanglement-enhanced optimal quantum metrology
- Authors: Muhammad Talha Rahim, Saif Al-Kuwari, Asad Ali,
- Abstract summary: We propose a QOC scheme for QM that leverages entanglement and optimized coupling interactions with an ancillary system to provide enhanced metrological performance.
Our findings indicate that, in certain situations, schemes employing coherent control of a single particle are severely limited.
- Score: 0.7373617024876725
- License:
- Abstract: Quantum optimal control (QOC) schemes can be employed to enhance the sensitivity of quantum metrology (QM) protocols undergoing Markovian noise, which can limit their precision to a standard quantum limit (SQL)-like scaling. In this paper, we propose a QOC scheme for QM that leverages entanglement and optimized coupling interactions with an ancillary system to provide enhanced metrological performance under general Markovian dynamics. We perform a comparative analysis of our entanglement-enhanced scheme against the unentangled scheme conventionally employed in QOC-enabled QM for varying evolution times and decoherence levels, revealing that the entanglement-enhanced scheme enables significantly better noise performance, even when a noisy ancilla is employed. We further extend our investigation to time-inhomogeneous noise models, specifically focusing on a noisy frequency estimation scenario within a spin-boson bath, and evaluate the protocol's performance under completely dissipative and dephasing dynamics. Our findings indicate that, in certain situations, schemes employing coherent control of a single particle are severely limited. In such cases, employing the entanglement-enhanced scheme can provide improved performance.
Related papers
- Optimal Quantum Purity Amplification [2.05170973574812]
Quantum purity amplification (QPA) offers a novel approach to counteract the pervasive noise that degrades quantum states.
We present the optimal QPA protocol for general quantum systems against global depolarizing noise.
Our findings suggest that QPA could improve the performance of quantum information processing tasks.
arXiv Detail & Related papers (2024-09-26T17:46:00Z) - Variational quantum state preparation for quantum-enhanced metrology in noisy systems [0.7652747219811168]
We simulate a low-depth variational quantum circuit (VQC) composed of a sequence of global rotations and entangling operations applied to a chain of qubits subject to dephasing noise.
We find that regardless of the details of the entangling operation implemented in the VQC, the optimal quantum states can be broadly classified into a trio of qualitative regimes.
Our findings are relevant for designing optimal state-preparation strategies for next-generation quantum sensors exploiting entanglement.
arXiv Detail & Related papers (2024-06-04T00:09:05Z) - Adaptive quantum error mitigation using pulse-based inverse evolutions [0.0]
We introduce a QEM method termed Adaptive KIK' that adapts to the noise level of the target device.
The implementation of the method is experimentally simple -- it does not involve any tomographic information or machine-learning stage.
We demonstrate our findings in the IBM quantum computers and through numerical simulations.
arXiv Detail & Related papers (2023-03-09T02:50:53Z) - Control-enhanced quantum metrology under Markovian noise [10.626708718934022]
We propose a control-enhanced quantum metrology scheme to defend against realistic noises.
As a demonstration, we apply it to the problem of frequency estimation under several typical Markovian noise channels.
We show that our scheme performs better and can improve the estimation precision up to around one order of magnitude.
arXiv Detail & Related papers (2022-11-03T13:39:47Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Shuffle-QUDIO: accelerate distributed VQE with trainability enhancement
and measurement reduction [77.97248520278123]
We propose Shuffle-QUDIO to involve shuffle operations into local Hamiltonians during the quantum distributed optimization.
Compared with QUDIO, Shuffle-QUDIO significantly reduces the communication frequency among quantum processors and simultaneously achieves better trainability.
arXiv Detail & Related papers (2022-09-26T06:51:20Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Quantum Amplitude Estimation in the Presence of Noise [0.0]
Quantum Amplitude Estimation is a key sub-routine in several important quantum algorithms, including Grover search and Quantum Monte-Carlo methods.
An obstacle to implementing QAE in noisy quantum devices has been the need to perform Quantum Phase Estimation as a sub-routine.
We show that, given an accurate noise characterization of one's system, one must choose a schedule that balances the trade-off between the greater ideal performance achieved by higher-depth circuits.
arXiv Detail & Related papers (2020-06-25T03:01:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.