MoLA: Motion Generation and Editing with Latent Diffusion Enhanced by Adversarial Training
- URL: http://arxiv.org/abs/2406.01867v3
- Date: Mon, 17 Feb 2025 09:00:41 GMT
- Title: MoLA: Motion Generation and Editing with Latent Diffusion Enhanced by Adversarial Training
- Authors: Kengo Uchida, Takashi Shibuya, Yuhta Takida, Naoki Murata, Julian Tanke, Shusuke Takahashi, Yuki Mitsufuji,
- Abstract summary: In text-to-motion generation, controllability as well as generation quality and speed has become increasingly critical.
We propose MoLA, which provides fast, high-quality, variable-length motion generation and can also deal with multiple editing tasks in a single framework.
- Score: 19.550281954226445
- License:
- Abstract: In text-to-motion generation, controllability as well as generation quality and speed has become increasingly critical. The controllability challenges include generating a motion of a length that matches the given textual description and editing the generated motions according to control signals, such as the start-end positions and the pelvis trajectory. In this paper, we propose MoLA, which provides fast, high-quality, variable-length motion generation and can also deal with multiple editing tasks in a single framework. Our approach revisits the motion representation used as inputs and outputs in the model, incorporating an activation variable to enable variable-length motion generation. Additionally, we integrate a variational autoencoder and a latent diffusion model, further enhanced through adversarial training, to achieve high-quality and fast generation. Moreover, we apply a training-free guided generation framework to achieve various editing tasks with motion control inputs. We quantitatively show the effectiveness of adversarial learning in text-to-motion generation, and demonstrate the applicability of our editing framework to multiple editing tasks in the motion domain.
Related papers
- Leader and Follower: Interactive Motion Generation under Trajectory Constraints [42.90788442575116]
This paper explores the motion range refinement process in interactive motion generation.
It proposes a training-free approach, integrating a Pace Controller and a Kinematic Synchronization Adapter.
Experimental results show that the proposed approach, by better leveraging trajectory information, outperforms existing methods in both realism and accuracy.
arXiv Detail & Related papers (2025-02-17T08:52:45Z) - MotionAgent: Fine-grained Controllable Video Generation via Motion Field Agent [58.09607975296408]
We propose MotionAgent, enabling fine-grained motion control for text-guided image-to-video generation.
The key technique is the motion field agent that converts motion information in text prompts into explicit motion fields.
We construct a subset of VBench to evaluate the alignment of motion information in the text and the generated video, outperforming other advanced models on motion generation accuracy.
arXiv Detail & Related papers (2025-02-05T14:26:07Z) - MotionLab: Unified Human Motion Generation and Editing via the Motion-Condition-Motion Paradigm [6.920041357348772]
Human motion generation and editing are key components of computer graphics and vision.
We introduce a novel paradigm: Motion-Condition-Motion, which enables the unified formulation of diverse tasks.
Based on this paradigm, we propose a unified framework, MotionLab, which incorporates rectified flows to learn the mapping from source motion to target motion.
arXiv Detail & Related papers (2025-02-04T14:43:26Z) - CigTime: Corrective Instruction Generation Through Inverse Motion Editing [12.947526481961516]
Given a user's current motion (source) and the desired motion (target), we generate text instructions to guide the user towards achieving the target motion.
We leverage large language models to generate corrective texts and utilize existing motion generation and editing frameworks.
Our approach demonstrates its effectiveness in instructional scenarios, offering text-based guidance to correct and enhance user performance.
arXiv Detail & Related papers (2024-12-06T22:57:36Z) - MotionGPT-2: A General-Purpose Motion-Language Model for Motion Generation and Understanding [76.30210465222218]
MotionGPT-2 is a unified Large Motion-Language Model (LMLMLM)
It supports multimodal control conditions through pre-trained Large Language Models (LLMs)
It is highly adaptable to the challenging 3D holistic motion generation task.
arXiv Detail & Related papers (2024-10-29T05:25:34Z) - Infinite Motion: Extended Motion Generation via Long Text Instructions [51.61117351997808]
"Infinite Motion" is a novel approach that leverages long text to extended motion generation.
Key innovation of our model is its ability to accept arbitrary lengths of text as input.
We incorporate the timestamp design for text which allows precise editing of local segments within the generated sequences.
arXiv Detail & Related papers (2024-07-11T12:33:56Z) - MotionFollower: Editing Video Motion via Lightweight Score-Guided Diffusion [94.66090422753126]
MotionFollower is a lightweight score-guided diffusion model for video motion editing.
It delivers superior motion editing performance and exclusively supports large camera movements and actions.
Compared with MotionEditor, the most advanced motion editing model, MotionFollower achieves an approximately 80% reduction in GPU memory.
arXiv Detail & Related papers (2024-05-30T17:57:30Z) - CoMo: Controllable Motion Generation through Language Guided Pose Code Editing [57.882299081820626]
We introduce CoMo, a Controllable Motion generation model, adept at accurately generating and editing motions.
CoMo decomposes motions into discrete and semantically meaningful pose codes.
It autoregressively generates sequences of pose codes, which are then decoded into 3D motions.
arXiv Detail & Related papers (2024-03-20T18:11:10Z) - Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
We propose emphMotion Flow Matching, a novel generative model for human motion generation featuring efficient sampling and effectiveness in motion editing applications.
Our method reduces the sampling complexity from thousand steps in previous diffusion models to just ten steps, while achieving comparable performance in text-to-motion and action-to-motion generation benchmarks.
arXiv Detail & Related papers (2023-12-14T12:57:35Z) - Motion In-Betweening with Phase Manifolds [29.673541655825332]
This paper introduces a novel data-driven motion in-betweening system to reach target poses of characters by making use of phases variables learned by a Periodic Autoencoder.
Our approach utilizes a mixture-of-experts neural network model, in which the phases cluster movements in both space and time with different expert weights.
arXiv Detail & Related papers (2023-08-24T12:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.