CigTime: Corrective Instruction Generation Through Inverse Motion Editing
- URL: http://arxiv.org/abs/2412.05460v1
- Date: Fri, 06 Dec 2024 22:57:36 GMT
- Title: CigTime: Corrective Instruction Generation Through Inverse Motion Editing
- Authors: Qihang Fang, Chengcheng Tang, Bugra Tekin, Yanchao Yang,
- Abstract summary: Given a user's current motion (source) and the desired motion (target), we generate text instructions to guide the user towards achieving the target motion.
We leverage large language models to generate corrective texts and utilize existing motion generation and editing frameworks.
Our approach demonstrates its effectiveness in instructional scenarios, offering text-based guidance to correct and enhance user performance.
- Score: 12.947526481961516
- License:
- Abstract: Recent advancements in models linking natural language with human motions have shown significant promise in motion generation and editing based on instructional text. Motivated by applications in sports coaching and motor skill learning, we investigate the inverse problem: generating corrective instructional text, leveraging motion editing and generation models. We introduce a novel approach that, given a user's current motion (source) and the desired motion (target), generates text instructions to guide the user towards achieving the target motion. We leverage large language models to generate corrective texts and utilize existing motion generation and editing frameworks to compile datasets of triplets (source motion, target motion, and corrective text). Using this data, we propose a new motion-language model for generating corrective instructions. We present both qualitative and quantitative results across a diverse range of applications that largely improve upon baselines. Our approach demonstrates its effectiveness in instructional scenarios, offering text-based guidance to correct and enhance user performance.
Related papers
- MotionFix: Text-Driven 3D Human Motion Editing [52.11745508960547]
Key challenges include the scarcity of training data and the need to design a model that accurately edits the source motion.
We propose a methodology to semi-automatically collect a dataset of triplets comprising (i) a source motion, (ii) a target motion, and (iii) an edit text.
Access to this data allows us to train a conditional diffusion model, TMED, that takes both the source motion and the edit text as input.
arXiv Detail & Related papers (2024-08-01T16:58:50Z) - Chronologically Accurate Retrieval for Temporal Grounding of Motion-Language Models [12.221087476416056]
We propose Chronologically Accurate Retrieval to evaluate the chronological understanding of motion-language models.
We decompose textual descriptions into events, and prepare negative text samples by shuffling the order of events in compound action descriptions.
We then design a simple task for motion-language models to retrieve the more likely text from the ground truth and its chronologically shuffled version.
arXiv Detail & Related papers (2024-07-22T06:25:21Z) - Infinite Motion: Extended Motion Generation via Long Text Instructions [51.61117351997808]
"Infinite Motion" is a novel approach that leverages long text to extended motion generation.
Key innovation of our model is its ability to accept arbitrary lengths of text as input.
We incorporate the timestamp design for text which allows precise editing of local segments within the generated sequences.
arXiv Detail & Related papers (2024-07-11T12:33:56Z) - MoLA: Motion Generation and Editing with Latent Diffusion Enhanced by Adversarial Training [19.550281954226445]
In text-to-motion generation, controllability as well as generation quality and speed has become increasingly critical.
We propose MoLA, which provides fast, high-quality, variable-length motion generation and can also deal with multiple editing tasks in a single framework.
arXiv Detail & Related papers (2024-06-04T00:38:44Z) - Learning Generalizable Human Motion Generator with Reinforcement Learning [95.62084727984808]
Text-driven human motion generation is one of the vital tasks in computer-aided content creation.
Existing methods often overfit specific motion expressions in the training data, hindering their ability to generalize.
We present textbfInstructMotion, which incorporate the trail and error paradigm in reinforcement learning for generalizable human motion generation.
arXiv Detail & Related papers (2024-05-24T13:29:12Z) - Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
We propose emphMotion Flow Matching, a novel generative model for human motion generation featuring efficient sampling and effectiveness in motion editing applications.
Our method reduces the sampling complexity from thousand steps in previous diffusion models to just ten steps, while achieving comparable performance in text-to-motion and action-to-motion generation benchmarks.
arXiv Detail & Related papers (2023-12-14T12:57:35Z) - SemanticBoost: Elevating Motion Generation with Augmented Textual Cues [73.83255805408126]
Our framework comprises a Semantic Enhancement module and a Context-Attuned Motion Denoiser (CAMD)
The CAMD approach provides an all-encompassing solution for generating high-quality, semantically consistent motion sequences.
Our experimental results demonstrate that SemanticBoost, as a diffusion-based method, outperforms auto-regressive-based techniques.
arXiv Detail & Related papers (2023-10-31T09:58:11Z) - MotionGPT: Human Motion as a Foreign Language [47.21648303282788]
Human motion displays a semantic coupling akin to human language, often perceived as a form of body language.
By fusing language data with large-scale motion models, motion-language pre-training can enhance the performance of motion-related tasks.
We propose MotionGPT, a unified, versatile, and user-friendly motion-language model to handle multiple motion-relevant tasks.
arXiv Detail & Related papers (2023-06-26T15:53:02Z) - Being Comes from Not-being: Open-vocabulary Text-to-Motion Generation
with Wordless Training [178.09150600453205]
In this paper, we investigate offline open-vocabulary text-to-motion generation in a zero-shot learning manner.
Inspired by the prompt learning in NLP, we pretrain a motion generator that learns to reconstruct the full motion from the masked motion.
Our method reformulates the input text into a masked motion as the prompt for the motion generator to reconstruct'' the motion.
arXiv Detail & Related papers (2022-10-28T06:20:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.