Cross-Domain Graph Data Scaling: A Showcase with Diffusion Models
- URL: http://arxiv.org/abs/2406.01899v2
- Date: Thu, 17 Oct 2024 19:56:08 GMT
- Title: Cross-Domain Graph Data Scaling: A Showcase with Diffusion Models
- Authors: Wenzhuo Tang, Haitao Mao, Danial Dervovic, Ivan Brugere, Saumitra Mishra, Yuying Xie, Jiliang Tang,
- Abstract summary: We propose UniAug, a universal graph structure augmentor built on a diffusion model.
We first pre-train a discrete diffusion model on thousands of graphs across domains to learn the graph structural patterns.
In the downstream phase, we provide adaptive enhancement by conducting graph structure augmentation with the help of the pre-trained diffusion model.
- Score: 32.46165651743604
- License:
- Abstract: Models for natural language and images benefit from data scaling behavior: the more data fed into the model, the better they perform. This 'better with more' phenomenon enables the effectiveness of large-scale pre-training on vast amounts of data. However, current graph pre-training methods struggle to scale up data due to heterogeneity across graphs. To achieve effective data scaling, we aim to develop a general model that is able to capture diverse data patterns of graphs and can be utilized to adaptively help the downstream tasks. To this end, we propose UniAug, a universal graph structure augmentor built on a diffusion model. We first pre-train a discrete diffusion model on thousands of graphs across domains to learn the graph structural patterns. In the downstream phase, we provide adaptive enhancement by conducting graph structure augmentation with the help of the pre-trained diffusion model via guided generation. By leveraging the pre-trained diffusion model for structure augmentation, we consistently achieve performance improvements across various downstream tasks in a plug-and-play manner. To the best of our knowledge, this study represents the first demonstration of a data-scaling graph structure augmentor on graphs across domains.
Related papers
- AnyGraph: Graph Foundation Model in the Wild [16.313146933922752]
Graph foundation models offer the potential to learn robust, generalizable representations from graph data.
In this work, we investigate a unified graph model, AnyGraph, designed to handle key challenges.
Our experiments on diverse 38 graph datasets have demonstrated the strong zero-shot learning performance of AnyGraph.
arXiv Detail & Related papers (2024-08-20T09:57:13Z) - GraphFM: A Scalable Framework for Multi-Graph Pretraining [2.882104808886318]
We introduce a scalable multi-graph multi-task pretraining approach specifically tailored for node classification tasks across diverse graph datasets from different domains.
We demonstrate the efficacy of our approach by training a model on 152 different graph datasets comprising over 7.4 million nodes and 189 million edges.
Our results show that pretraining on a diverse array of real and synthetic graphs improves the model's adaptability and stability, while performing competitively with state-of-the-art specialist models.
arXiv Detail & Related papers (2024-07-16T16:51:43Z) - Generative Expansion of Small Datasets: An Expansive Graph Approach [13.053285552524052]
We introduce an Expansive Synthesis model generating large-scale, information-rich datasets from minimal samples.
An autoencoder with self-attention layers and optimal transport refines distributional consistency.
Results show comparable performance, demonstrating the model's potential to augment training data effectively.
arXiv Detail & Related papers (2024-06-25T02:59:02Z) - Through the Dual-Prism: A Spectral Perspective on Graph Data
Augmentation for Graph Classification [71.36575018271405]
We introduce the Dual-Prism (DP) augmentation method, comprising DP-Noise and DP-Mask.
We find that keeping the low-frequency eigenvalues unchanged can preserve the critical properties at a large scale when generating augmented graphs.
arXiv Detail & Related papers (2024-01-18T12:58:53Z) - Deep Prompt Tuning for Graph Transformers [55.2480439325792]
Fine-tuning is resource-intensive and requires storing multiple copies of large models.
We propose a novel approach called deep graph prompt tuning as an alternative to fine-tuning.
By freezing the pre-trained parameters and only updating the added tokens, our approach reduces the number of free parameters and eliminates the need for multiple model copies.
arXiv Detail & Related papers (2023-09-18T20:12:17Z) - Graph-Aware Language Model Pre-Training on a Large Graph Corpus Can Help
Multiple Graph Applications [38.83545631999851]
We propose a framework of graph-aware language model pre-training on a large graph corpus.
We conduct experiments on Amazon's real internal datasets and large public datasets.
arXiv Detail & Related papers (2023-06-05T04:46:44Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Generative Diffusion Models on Graphs: Methods and Applications [50.44334458963234]
Diffusion models, as a novel generative paradigm, have achieved remarkable success in various image generation tasks.
Graph generation is a crucial computational task on graphs with numerous real-world applications.
arXiv Detail & Related papers (2023-02-06T06:58:17Z) - Data Augmentation for Deep Graph Learning: A Survey [66.04015540536027]
We first propose a taxonomy for graph data augmentation and then provide a structured review by categorizing the related work based on the augmented information modalities.
Focusing on the two challenging problems in DGL (i.e., optimal graph learning and low-resource graph learning), we also discuss and review the existing learning paradigms which are based on graph data augmentation.
arXiv Detail & Related papers (2022-02-16T18:30:33Z) - Robust Optimization as Data Augmentation for Large-scale Graphs [117.2376815614148]
We propose FLAG (Free Large-scale Adversarial Augmentation on Graphs), which iteratively augments node features with gradient-based adversarial perturbations during training.
FLAG is a general-purpose approach for graph data, which universally works in node classification, link prediction, and graph classification tasks.
arXiv Detail & Related papers (2020-10-19T21:51:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.