GOMAA-Geo: GOal Modality Agnostic Active Geo-localization
- URL: http://arxiv.org/abs/2406.01917v1
- Date: Tue, 4 Jun 2024 02:59:36 GMT
- Title: GOMAA-Geo: GOal Modality Agnostic Active Geo-localization
- Authors: Anindya Sarkar, Srikumar Sastry, Aleksis Pirinen, Chongjie Zhang, Nathan Jacobs, Yevgeniy Vorobeychik,
- Abstract summary: We consider the task of active geo-localization (AGL) in which an agent uses a sequence of visual cues observed during aerial navigation to find a target specified through multiple possible modalities.
GOMAA-Geo is a goal modality active geo-localization agent for zero-shot generalization between different goal modalities.
- Score: 49.599465495973654
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We consider the task of active geo-localization (AGL) in which an agent uses a sequence of visual cues observed during aerial navigation to find a target specified through multiple possible modalities. This could emulate a UAV involved in a search-and-rescue operation navigating through an area, observing a stream of aerial images as it goes. The AGL task is associated with two important challenges. Firstly, an agent must deal with a goal specification in one of multiple modalities (e.g., through a natural language description) while the search cues are provided in other modalities (aerial imagery). The second challenge is limited localization time (e.g., limited battery life, urgency) so that the goal must be localized as efficiently as possible, i.e. the agent must effectively leverage its sequentially observed aerial views when searching for the goal. To address these challenges, we propose GOMAA-Geo - a goal modality agnostic active geo-localization agent - for zero-shot generalization between different goal modalities. Our approach combines cross-modality contrastive learning to align representations across modalities with supervised foundation model pretraining and reinforcement learning to obtain highly effective navigation and localization policies. Through extensive evaluations, we show that GOMAA-Geo outperforms alternative learnable approaches and that it generalizes across datasets - e.g., to disaster-hit areas without seeing a single disaster scenario during training - and goal modalities - e.g., to ground-level imagery or textual descriptions, despite only being trained with goals specified as aerial views. Code and models are publicly available at https://github.com/mvrl/GOMAA-Geo/tree/main.
Related papers
- Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
We introduce smileGeo, a novel visual geo-localization framework.
By inter-agent communication, smileGeo integrates the inherent knowledge of these agents with additional retrieved information.
Results show that our approach significantly outperforms current state-of-the-art methods.
arXiv Detail & Related papers (2024-08-21T03:31:30Z) - Geo-Encoder: A Chunk-Argument Bi-Encoder Framework for Chinese
Geographic Re-Ranking [61.60169764507917]
Chinese geographic re-ranking task aims to find the most relevant addresses among retrieved candidates.
We propose an innovative framework, namely Geo-Encoder, to more effectively integrate Chinese geographical semantics into re-ranking pipelines.
arXiv Detail & Related papers (2023-09-04T13:44:50Z) - How To Not Train Your Dragon: Training-free Embodied Object Goal
Navigation with Semantic Frontiers [94.46825166907831]
We present a training-free solution to tackle the object goal navigation problem in Embodied AI.
Our method builds a structured scene representation based on the classic visual simultaneous localization and mapping (V-SLAM) framework.
Our method propagates semantics on the scene graphs based on language priors and scene statistics to introduce semantic knowledge to the geometric frontiers.
arXiv Detail & Related papers (2023-05-26T13:38:33Z) - Meta-Explore: Exploratory Hierarchical Vision-and-Language Navigation
Using Scene Object Spectrum Grounding [16.784045122994506]
We propose a hierarchical navigation method deploying an exploitation policy to correct misled recent actions.
We show that an exploitation policy, which moves the agent toward a well-chosen local goal, outperforms a method which moves the agent to a previously visited state.
We present a novel visual representation, called scene object spectrum (SOS), which performs category-wise 2D Fourier transform of detected objects.
arXiv Detail & Related papers (2023-03-07T17:39:53Z) - Aerial View Goal Localization with Reinforcement Learning [6.165163123577484]
We present a framework that emulates a search-and-rescue (SAR)-like setup without requiring access to actual UAVs.
In this framework, an agent operates on top of an aerial image (proxy for a search area) and is tasked with localizing a goal that is described in terms of visual cues.
We propose AiRLoc, a reinforcement learning (RL)-based model that decouples exploration (searching for distant goals) and exploitation (localizing nearby goals)
arXiv Detail & Related papers (2022-09-08T10:27:53Z) - A Gis Aided Approach for Geolocalizing an Unmanned Aerial System Using
Deep Learning [0.4297070083645048]
We propose an alternative approach to geolocalize a UAS when GPS signal is degraded or denied.
Considering UAS has a downward-looking camera on its platform that can acquire real-time images as the platform flies, we apply modern deep learning techniques to achieve geolocalization.
We extract GIS information from OpenStreetMap (OSM) to semantically segment matched features into building and terrain classes.
arXiv Detail & Related papers (2022-08-25T17:51:15Z) - Think Global, Act Local: Dual-scale Graph Transformer for
Vision-and-Language Navigation [87.03299519917019]
We propose a dual-scale graph transformer (DUET) for joint long-term action planning and fine-grained cross-modal understanding.
We build a topological map on-the-fly to enable efficient exploration in global action space.
The proposed approach, DUET, significantly outperforms state-of-the-art methods on goal-oriented vision-and-language navigation benchmarks.
arXiv Detail & Related papers (2022-02-23T19:06:53Z) - Batch Exploration with Examples for Scalable Robotic Reinforcement
Learning [63.552788688544254]
Batch Exploration with Examples (BEE) explores relevant regions of the state-space guided by a modest number of human provided images of important states.
BEE is able to tackle challenging vision-based manipulation tasks both in simulation and on a real Franka robot.
arXiv Detail & Related papers (2020-10-22T17:49:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.