論文の概要: Plug-and-Play Diffusion Distillation
- arxiv url: http://arxiv.org/abs/2406.01954v1
- Date: Tue, 4 Jun 2024 04:22:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 18:00:19.032561
- Title: Plug-and-Play Diffusion Distillation
- Title(参考訳): プラグアンドプレイ拡散蒸留
- Authors: Yi-Ting Hsiao, Siavash Khodadadeh, Kevin Duarte, Wei-An Lin, Hui Qu, Mingi Kwon, Ratheesh Kalarot,
- Abstract要約: 誘導拡散モデルのための新しい蒸留手法を提案する。
オリジナルのテキスト・ツー・イメージモデルが凍結されている間、外部の軽量ガイドモデルがトレーニングされる。
提案手法は,クラス化なしガイド付きラテント空間拡散モデルの推論をほぼ半減することを示す。
- 参考スコア(独自算出の注目度): 14.359953671470242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have shown tremendous results in image generation. However, due to the iterative nature of the diffusion process and its reliance on classifier-free guidance, inference times are slow. In this paper, we propose a new distillation approach for guided diffusion models in which an external lightweight guide model is trained while the original text-to-image model remains frozen. We show that our method reduces the inference computation of classifier-free guided latent-space diffusion models by almost half, and only requires 1\% trainable parameters of the base model. Furthermore, once trained, our guide model can be applied to various fine-tuned, domain-specific versions of the base diffusion model without the need for additional training: this "plug-and-play" functionality drastically improves inference computation while maintaining the visual fidelity of generated images. Empirically, we show that our approach is able to produce visually appealing results and achieve a comparable FID score to the teacher with as few as 8 to 16 steps.
- Abstract(参考訳): 拡散モデルは画像生成に大きな結果をもたらした。
しかし,拡散過程の反復性や分類器フリー誘導に依存するため,推論時間は遅い。
本稿では,従来のテキスト・ツー・イメージモデルが凍結したまま,外部の軽量ガイドモデルをトレーニングする誘導拡散モデルに対する新しい蒸留手法を提案する。
提案手法は,クラス化なしガイド付きラテント空間拡散モデルの推論計算をほぼ半分に減らし,ベースモデルのトレーニング可能なパラメータを 1 % しか必要としないことを示す。
さらに、トレーニングが完了すれば、このガイドモデルは、追加のトレーニングを必要とせずに、様々な細調整されたドメイン固有のベース拡散モデルに適用することができる。
実験により,本手法は視覚的に魅力的な結果が得られ,教師に対して8段階から16段階のFIDスコアが得られた。
関連論文リスト
- Representation Alignment for Generation: Training Diffusion Transformers Is Easier Than You Think [72.48325960659822]
生成のための大規模拡散モデルの訓練における主要なボトルネックは、これらの表現を効果的に学習することにある。
本稿では,RePresentation Alignment (REPA) と呼ばれる単純な正規化を導入し,ノイズの多い入力隠れ状態の投影を,外部の事前学習された視覚エンコーダから得られるクリーンな画像表現と整合させる手法を提案する。
我々の単純な戦略は、一般的な拡散やDiTsやSiTsといったフローベースのトランスフォーマーに適用した場合、トレーニング効率と生成品質の両方に大きな改善をもたらす。
論文 参考訳(メタデータ) (2024-10-09T14:34:53Z) - Tuning Timestep-Distilled Diffusion Model Using Pairwise Sample Optimization [97.35427957922714]
任意の時間ステップ蒸留拡散モデルを直接微調整できるPSOアルゴリズムを提案する。
PSOは、現在の時間ステップ蒸留モデルからサンプリングされた追加の参照画像を導入し、トレーニング画像と参照画像との相対的な近縁率を増大させる。
PSOは、オフラインとオンラインのペアワイズ画像データの両方を用いて、蒸留モデルを直接人間の好ましくない世代に適応させることができることを示す。
論文 参考訳(メタデータ) (2024-10-04T07:05:16Z) - An Expectation-Maximization Algorithm for Training Clean Diffusion Models from Corrupted Observations [21.411327264448058]
本稿では, 予測最大化(EM)手法を提案し, 劣化した観測から拡散モデルを訓練する。
本手法は, 既知拡散モデル(E-step)を用いた劣化データからのクリーン画像の再構成と, これらの再構成(M-step)に基づく拡散モデル重みの精製とを交互に行う。
この反復過程は、学習された拡散モデルを真のクリーンなデータ分布に徐々に収束させる。
論文 参考訳(メタデータ) (2024-07-01T07:00:17Z) - Training Class-Imbalanced Diffusion Model Via Overlap Optimization [55.96820607533968]
実世界のデータセットで訓練された拡散モデルは、尾クラスの忠実度が劣ることが多い。
拡散モデルを含む深い生成モデルは、豊富な訓練画像を持つクラスに偏りがある。
本研究では,異なるクラスに対する合成画像の分布の重複を最小限に抑えるために,コントラスト学習に基づく手法を提案する。
論文 参考訳(メタデータ) (2024-02-16T16:47:21Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
ファインチューニング拡散モデル : 生成人工知能(GenAI)の最前線
本稿では,拡散モデル(SPIN-Diffusion)のための自己演奏ファインチューニングという革新的な手法を紹介する。
提案手法は従来の教師付き微調整とRL戦略の代替として,モデル性能とアライメントの両方を大幅に改善する。
論文 参考訳(メタデータ) (2024-02-15T18:59:18Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - Adversarial Diffusion Distillation [18.87099764514747]
逆拡散蒸留(adversarial Diffusion Distillation、ADD)は、1-4ステップで大規模な基礎画像拡散モデルを効率的にサンプリングする新しい訓練手法である。
我々は,大規模なオフザシェルフ画像拡散モデルを教師信号として活用するために,スコア蒸留を用いる。
本モデルでは,既存の数ステップ法を1ステップで明らかに上回り,4ステップで最先端拡散モデル(SDXL)の性能に到達する。
論文 参考訳(メタデータ) (2023-11-28T18:53:24Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
そこで本研究では,分類器を含まない誘導拡散モデルから抽出し易いモデルへ抽出する手法を提案する。
画素空間上で訓練された標準拡散モデルに対して,本手法は元のモデルに匹敵する画像を生成することができる。
遅延空間で訓練された拡散モデル(例えば、安定拡散)に対して、我々の手法は1から4段階のデノナイジングステップで高忠実度画像を生成することができる。
論文 参考訳(メタデータ) (2022-10-06T18:03:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。