論文の概要: Dealing with All-stage Missing Modality: Towards A Universal Model with Robust Reconstruction and Personalization
- arxiv url: http://arxiv.org/abs/2406.01987v1
- Date: Tue, 4 Jun 2024 06:07:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 17:50:34.154019
- Title: Dealing with All-stage Missing Modality: Towards A Universal Model with Robust Reconstruction and Personalization
- Title(参考訳): 全段階欠落モダリティによる対処:ロバスト再構築とパーソナライゼーションによるユニバーサルモデルに向けて
- Authors: Yunpeng Zhao, Cheng Chen, Qing You Pang, Quanzheng Li, Carol Tang, Beng-Ti Ang, Yueming Jin,
- Abstract要約: 現在のアプローチでは、推論中にモダリティ不完全入力を処理するモデルの開発に重点を置いている。
本稿では、モダリティ再構成とモデルパーソナライゼーションを備えた頑健な普遍モデルを提案する。
本手法は2つの脳腫瘍セグメンテーションベンチマークで広範囲に検証されている。
- 参考スコア(独自算出の注目度): 14.606035444283984
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Addressing missing modalities presents a critical challenge in multimodal learning. Current approaches focus on developing models that can handle modality-incomplete inputs during inference, assuming that the full set of modalities are available for all the data during training. This reliance on full-modality data for training limits the use of abundant modality-incomplete samples that are often encountered in practical settings. In this paper, we propose a robust universal model with modality reconstruction and model personalization, which can effectively tackle the missing modality at both training and testing stages. Our method leverages a multimodal masked autoencoder to reconstruct the missing modality and masked patches simultaneously, incorporating an innovative distribution approximation mechanism to fully utilize both modality-complete and modality-incomplete data. The reconstructed modalities then contributes to our designed data-model co-distillation scheme to guide the model learning in the presence of missing modalities. Moreover, we propose a CLIP-driven hyper-network to personalize partial model parameters, enabling the model to adapt to each distinct missing modality scenario. Our method has been extensively validated on two brain tumor segmentation benchmarks. Experimental results demonstrate the promising performance of our method, which consistently exceeds previous state-of-the-art approaches under the all-stage missing modality settings with different missing ratios. Code will be available.
- Abstract(参考訳): 欠落したモダリティに対処することは、マルチモーダル学習において重要な課題となる。
現在のアプローチでは、トレーニング中のすべてのデータに対して完全なモダリティのセットが利用できると仮定して、推論中にモダリティ不完全入力を処理できるモデルの開発に重点を置いている。
このトレーニングのための完全なモダリティデータへの依存は、実用的な環境でしばしば遭遇する豊富なモダリティ不完全なサンプルの使用を制限する。
本稿では,モダリティの再構築とモデルパーソナライゼーションを併用したロバストなユニバーサルモデルを提案する。
本手法では,マルチモーダルマスク方式のオートエンコーダを用いて,欠落したモダリティとマスクされたパッチを同時に再構築し,モダリティ完全データとモダリティ不完全データの両方を完全に活用する,革新的な分布近似機構を組み込んだ。
再構成されたモダリティは、欠落したモダリティの存在下でモデル学習を導くために、設計したデータモデル共蒸留方式に寄与する。
さらに、部分モデルパラメータをパーソナライズするCLIP駆動型ハイパーネットワークを提案する。
本手法は2つの脳腫瘍セグメンテーションベンチマークで広範囲に検証されている。
提案手法は, 従来手法を常に上回り, 欠落率の異なる全段欠落条件下で有望な性能を示す実験結果を得た。
コードは利用可能です。
関連論文リスト
- Missing Modality Prediction for Unpaired Multimodal Learning via Joint Embedding of Unimodal Models [6.610033827647869]
実世界のシナリオでは、完全なマルチモーダルデータを一貫して取得することは重大な課題である。
これはしばしば、特定のモダリティのデータが欠落しているモダリティの問題につながる。
自己教師型共同埋め込み学習手法を用いて, パラメータ効率のよい未学習モデルの微調整を行う新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-07-17T14:44:25Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
現実のアプリケーションは、プライバシの懸念、効率性の必要性、ハードウェアの問題により、不完全なモダリティを伴う問題に直面することが多い。
再トレーニングを必要とせずに,テスト時にこの問題に対処する新しい手法を提案する。
MiDlは、欠落したモダリティをテスト時にのみ扱う、自己管理型のオンラインソリューションとしては初めてのものだ。
論文 参考訳(メタデータ) (2024-04-23T16:01:33Z) - Cross-Modal Prototype based Multimodal Federated Learning under Severely
Missing Modality [31.727012729846333]
MFCPL (Multimodal Federated Cross Prototype Learning) は、MFLにおいて、高度に欠落したモダリティの下での新たなアプローチである。
MFCPLは、モダリティ共有レベルにおいて、クロスモーダル正規化とクロスモーダルコントラスト機構を備えたモダリティ固有レベルと共に多様なモダリティ知識を提供する。
提案手法では,モーダリティに特有な特徴の正規化を実現するために,クロスモーダルアライメントを導入し,全体的な性能を向上させる。
論文 参考訳(メタデータ) (2024-01-25T02:25:23Z) - Multimodal Federated Learning with Missing Modality via Prototype Mask
and Contrast [23.936677199734213]
本稿では,FedAvgベースのFederated Learningフレームワークにプロトタイプライブラリを導入する。
提案手法は,タスク校正されたトレーニング損失とモデルに依存しない一様性推論戦略を定式化するために,欠落したモダリティを表すマスクとしてプロトタイプを利用する。
ベースラインと比較して,トレーニング中に50%のモダリティが欠落し,一様性推論時に23.8%の精度で推論精度が3.7%向上した。
論文 参考訳(メタデータ) (2023-12-21T00:55:12Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETALは、一意のモード近似技術によって達成される全パラメータの0.5%しか必要とせず、トレーニングプロセスに革命をもたらす。
実験の結果,PETALは現状の手法をほとんどのシナリオで上回るだけでなく,完全な微調整モデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-12-16T17:13:08Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Ensemble Modeling for Multimodal Visual Action Recognition [50.38638300332429]
マルチモーダル動作認識のためのアンサンブルモデリング手法を提案する。
我々は,MECCANO[21]データセットの長期分布を処理するために,焦点損失の変種を用いて,個別のモダリティモデルを個別に訓練する。
論文 参考訳(メタデータ) (2023-08-10T08:43:20Z) - Learning Unseen Modality Interaction [54.23533023883659]
マルチモーダル学習は、すべてのモダリティの組み合わせが訓練中に利用でき、クロスモーダル対応を学ぶことを前提としている。
我々は、目に見えないモダリティ相互作用の問題を提起し、第1の解を導入する。
異なるモジュラリティの多次元的特徴を、豊富な情報を保存した共通空間に投影するモジュールを利用する。
論文 参考訳(メタデータ) (2023-06-22T10:53:10Z) - Towards Good Practices for Missing Modality Robust Action Recognition [20.26021126604409]
本稿では,マルチモーダル動作認識のための一連のベストプラクティスを提案する。
トレーニング中にモデルを効果的に正規化する方法を研究する。
第二に、欠落したモダリティに対するロバスト性のための融合法について検討する。
第3に、モダリティ予測符号の欠如を学習する単純なモジュラーネットワークであるActionMAEを提案する。
論文 参考訳(メタデータ) (2022-11-25T06:10:57Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
我々は、欠落したモダリティ・イマジネーション・ネットワーク(IF-MMIN)に不変な特徴を用いることを提案する。
提案モデルは,不確実なモダリティ条件下で,すべてのベースラインを上回り,全体の感情認識性能を不変に向上することを示す。
論文 参考訳(メタデータ) (2022-10-27T12:16:25Z) - Discriminative Multimodal Learning via Conditional Priors in Generative
Models [21.166519800652047]
本研究は,モデルトレーニングにおいて,すべてのモダリティとクラスラベルが利用できる現実的なシナリオについて研究する。
このシナリオでは、変動的な下界境界は、結合表現と欠測モダリティの間の相互情報を制限する。
論文 参考訳(メタデータ) (2021-10-09T17:22:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。