論文の概要: A Unifying Framework for Action-Conditional Self-Predictive Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2406.02035v1
- Date: Tue, 4 Jun 2024 07:22:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 17:40:41.931411
- Title: A Unifying Framework for Action-Conditional Self-Predictive Reinforcement Learning
- Title(参考訳): アクション・コンディション型自己予測強化学習のための統一フレームワーク
- Authors: Khimya Khetarpal, Zhaohan Daniel Guo, Bernardo Avila Pires, Yunhao Tang, Clare Lyle, Mark Rowland, Nicolas Heess, Diana Borsa, Arthur Guez, Will Dabney,
- Abstract要約: 優れた表現を学ぶことは、強化学習(RL)エージェントにとって重要な課題である。
近年の研究では、これらのアルゴリズムに関する理論的洞察が生まれている。
我々は,行動条件の自己予測的目的を分析することによって,理論と実践のギャップを埋める一歩を踏み出した。
- 参考スコア(独自算出の注目度): 48.59516337905877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning a good representation is a crucial challenge for Reinforcement Learning (RL) agents. Self-predictive learning provides means to jointly learn a latent representation and dynamics model by bootstrapping from future latent representations (BYOL). Recent work has developed theoretical insights into these algorithms by studying a continuous-time ODE model for self-predictive representation learning under the simplifying assumption that the algorithm depends on a fixed policy (BYOL-$\Pi$); this assumption is at odds with practical instantiations of such algorithms, which explicitly condition their predictions on future actions. In this work, we take a step towards bridging the gap between theory and practice by analyzing an action-conditional self-predictive objective (BYOL-AC) using the ODE framework, characterizing its convergence properties and highlighting important distinctions between the limiting solutions of the BYOL-$\Pi$ and BYOL-AC dynamics. We show how the two representations are related by a variance equation. This connection leads to a novel variance-like action-conditional objective (BYOL-VAR) and its corresponding ODE. We unify the study of all three objectives through two complementary lenses; a model-based perspective, where each objective is shown to be equivalent to a low-rank approximation of certain dynamics, and a model-free perspective, which establishes relationships between the objectives and their respective value, Q-value, and advantage function. Our empirical investigations, encompassing both linear function approximation and Deep RL environments, demonstrates that BYOL-AC is better overall in a variety of different settings.
- Abstract(参考訳): 優れた表現を学ぶことは、強化学習(RL)エージェントにとって重要な課題である。
自己予測学習は、将来の潜伏表現(BYOL)からブートストラップすることで、潜伏表現と動的モデルを共同で学習する手段を提供する。
最近の研究は、アルゴリズムが固定ポリシー(BYOL-$\Pi$)に依存しているという仮定を単純化し、自己予測表現学習のための連続時間ODEモデルを研究することで、これらのアルゴリズムに関する理論的洞察を発達させてきた。
本研究では、ODEフレームワークを用いて行動条件自己予測目標(BYOL-AC)を解析し、その収束特性を特徴づけ、BYOL-$\Pi$とBYOL-ACの制限解間の重要な区別を強調することにより、理論と実践のギャップを埋める。
この2つの表現が分散方程式によってどのように関連しているかを示す。
この接続により、新しい分散様行動条件目的(BYOL-VAR)とその対応するODEが導かれる。
2つの相補レンズによる3つの目的の研究を統一し、各目的が特定のダイナミクスの低ランク近似と等価であることを示すモデルベース視点と、目的とそれぞれの値、Q-値、利点関数の関係を確立するモデルフリー視点とで統一する。
線形関数近似と深部RL環境の両方を包含した実証実験により,BYOL-ACは様々な環境において総合的に優れていることが示された。
関連論文リスト
- A Probabilistic Model Behind Self-Supervised Learning [53.64989127914936]
自己教師付き学習(SSL)では、アノテートラベルなしで補助的なタスクを通じて表現が学習される。
自己教師型学習のための生成潜在変数モデルを提案する。
対照的な方法を含む識別的SSLのいくつかのファミリーは、表現に匹敵する分布を誘導することを示した。
論文 参考訳(メタデータ) (2024-02-02T13:31:17Z) - Causal Coordinated Concurrent Reinforcement Learning [8.654978787096807]
本稿では,データ共有と協調探索のための新しいアルゴリズムフレームワークを提案する。
本アルゴリズムは,独立規制による個人差分制御モデルパラメータの抽出において,付加雑音モデル-混合モデル(ANM-MM)という形で因果推論アルゴリズムを利用する。
抽出したモデルパラメータの類似度に基づく新しいデータ共有方式を提案し, 自己回帰, 振り子, カートポールのスイングアップタスクのセットにおいて, 優れた学習速度を示す。
論文 参考訳(メタデータ) (2024-01-31T17:20:28Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
モデルに基づく強化学習のサンプル効率を改善するために、潜在変数モデルが学習、計画、探索をいかに促進するかは理論上、実証上、不明である。
状態-作用値関数に対する潜在変数モデルの表現ビューを提供する。これは、抽出可能な変分学習アルゴリズムと楽観主義/悲観主義の原理の効果的な実装の両方を可能にする。
特に,潜伏変数モデルのカーネル埋め込みを組み込んだUPB探索を用いた計算効率の良い計画アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-17T00:26:31Z) - Simplifying Model-based RL: Learning Representations, Latent-space
Models, and Policies with One Objective [142.36200080384145]
自己整合性を維持しつつ高いリターンを達成するために,潜在空間モデルとポリシーを協調的に最適化する単一目的を提案する。
得られたアルゴリズムは, モデルベースおよびモデルフリーRL手法のサンプル効率に適合するか, 改善することを示した。
論文 参考訳(メタデータ) (2022-09-18T03:51:58Z) - Weakly Supervised Disentangled Representation for Goal-conditioned
Reinforcement Learning [15.698612710580447]
本稿では,サンプル効率の向上と政策一般化を目的としたスキル学習フレームワークDR-GRLを提案する。
本稿では,解釈可能かつ制御可能な表現を学習するための空間変換オートエンコーダ(STAE)を提案する。
DR-GRLは, 試料効率と政策一般化において, 従来の手法よりも有意に優れていたことを実証的に実証した。
論文 参考訳(メタデータ) (2022-02-28T09:05:14Z) - Adversarial Intrinsic Motivation for Reinforcement Learning [60.322878138199364]
政策状態の訪問分布と目標分布とのワッサースタイン-1距離が強化学習タスクに有効に活用できるかどうかを検討する。
我々のアプローチは、AIM (Adversarial Intrinsic Motivation) と呼ばれ、このワッサーシュタイン-1距離をその双対目的を通して推定し、補足報酬関数を計算する。
論文 参考訳(メタデータ) (2021-05-27T17:51:34Z) - The Value Equivalence Principle for Model-Based Reinforcement Learning [29.368870568214007]
モデルベースRLエージェントの限られた表現資源は、価値ベースプランニングに直接有用なモデルを構築するのによく使われていると論じる。
検討されたポリシーと関数の集合を拡大するにつれて、値等価モデルのクラスが縮小することを示す。
価値等価性の原理は、RLにおける最近の経験的成功の根底にあると論じる。
論文 参考訳(メタデータ) (2020-11-06T18:25:54Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。