Experimental single-photon quantum key distribution surpassing the fundamental coherent-state rate limit
- URL: http://arxiv.org/abs/2406.02045v1
- Date: Tue, 4 Jun 2024 07:28:15 GMT
- Title: Experimental single-photon quantum key distribution surpassing the fundamental coherent-state rate limit
- Authors: Yang Zhang, Xing Ding, Yang Li, Likang Zhang, Yong-Peng Guo, Gao-Qiang Wang, Zhen Ning, Mo-Chi Xu, Run-Ze Liu, Jun-Yi Zhao, Geng-Yan Zou, Hui Wang, Yuan Cao, Yu-Ming He, Cheng-Zhi Peng, Yong-Heng Huo, Sheng-Kai Liao, Chao-Yang Lu, Feihu Xu, Jian-Wei Pan,
- Abstract summary: Single-photon sources are essential for quantum networks, enabling applications ranging from quantum key distribution (QKD) to the burgeoning quantum internet.
Here, we report high-rate QKD using a high-efficiency single-photon source, enabling an SKR transcending the fundamental rate limit of coherent light.
Our findings conclusively demonstrate the superior performance of nanotechnology-based single-photon sources over coherent light for QKD applications, marking a pivotal stride towards the realization of a global quantum internet.
- Score: 11.795169912821704
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Single-photon sources are essential for quantum networks, enabling applications ranging from quantum key distribution (QKD) to the burgeoning quantum internet. Despite the remarkable advancements, the current reliance of QKD on attenuated coherent (laser) light sources has imposed a fundamental limit on the secret key rate (SKR). This constraint is primarily attributable to the scarcity of single-photon components within coherent light, confined by an inherent upper bound of 1/e. Here, we report high-rate QKD using a high-efficiency single-photon source, enabling an SKR transcending the fundamental rate limit of coherent light. We developed an on-demand, bright semiconductor quantum-dot single-photon source with an efficiency of 0.71(2), exceeding the inherent bound of coherent light by approximately 2.87 dB. Implementing narrow-bandwidth filtering and random polarization modulation, we conducted a field QKD trial over a 14.6(1.1)-dB-loss free-space urban channel, achieving an SKR of 0.00108 bits per pulse. This surpasses the practical limit of coherent-light-based QKD by 2.53 dB. Our findings conclusively demonstrate the superior performance of nanotechnology-based single-photon sources over coherent light for QKD applications, marking a pivotal stride towards the realization of a global quantum internet.
Related papers
- Tunable quantum dots in monolithic Fabry-Perot microcavities for
high-performance single-photon sources [13.880332867320176]
Cavity-enhanced single quantum dots (QDs) are the main approach towards ultra-high-performance solid-state quantum light sources.
Here we have successfully integrated miniaturized Fabry-Perot microcavities with a piezoelectric actuator.
We have demonstrated a bright single photon source derived from a deterministically coupled QD within this microcavity.
arXiv Detail & Related papers (2023-09-24T15:06:47Z) - Oscillating photonic Bell state from a semiconductor quantum dot for
quantum key distribution [0.0]
An on-demand source of bright entangled photon pairs is desirable for quantum key distribution (QKD) and quantum repeaters.
Here, we demonstrate a 65-fold increase in the pair extraction efficiency compared to quantum dots with equivalent peak fidelity.
arXiv Detail & Related papers (2023-07-12T22:09:19Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Quantum Key Distribution using Deterministic Single-Photon Sources over
a Field-Installed Fibre Link [2.1033685912119466]
We realize a quantum key distribution field trial using true single photons across an 18-km-long dark fibre, located in the Copenhagen metropolitan area.
A secret key generation rate of >2 kbits/s realized over a 9.6 dB channel loss is achieved with a polarization-encoded BB84 scheme.
arXiv Detail & Related papers (2023-01-23T12:43:23Z) - Ultrabright and narrowband intra-fiber biphoton source at ultralow pump
power [51.961447341691]
Nonclassical photon sources of high brightness are key components of quantum communication technologies.
We here demonstrate the generation of narrowband, nonclassical photon pairs by employing spontaneous four-wave mixing in an optically-dense ensemble of cold atoms within a hollow-core fiber.
arXiv Detail & Related papers (2022-08-10T09:04:15Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Enhancing secure key rates of satellite QKD using a quantum dot
single-photon source [0.5420492913071214]
Global quantum secure communication can be achieved using quantum key distribution (QKD) with orbiting satellites.
Existing techniques use attenuated lasers as weak coherent pulse (WCP) sources, with so-called decoy-state protocols, to generate the required single-photon-level pulses.
We improve on this limitation by using true single-photon pulses generated from a semiconductor quantum dot (QD) embedded in a nanowire.
arXiv Detail & Related papers (2020-09-24T16:55:16Z) - Entangled Photon-Pair Sources based on three-wave mixing in bulk
crystals [61.84816391246232]
Entangled photon-pairs are a critical resource in quantum communication protocols ranging from quantum key distribution to teleportation.
The increased prominence of quantum networks has led to growing interest in deployable high performance entangled photon-pair sources.
This manuscript provides a review of the state-of-the-art for bulk-optics-based SPDC sources with continuous wave pump.
arXiv Detail & Related papers (2020-07-30T10:35:06Z) - High-fidelity, low-latency polarization quantum state transmissions over
a hollow-core conjoined-tube fibre at around 800 nm [9.633003822258685]
We show high-fidelity (0.98) single-photon transmission and distribution of entangled photons over a conjoined-tube hollow-core fibre (CTF)
Our CTF realized the combined merits of low loss, high spatial mode purity, low polarization degradation, and low chromatic dispersion.
We also demonstrate single-photon low latency (99.96% speed of light in vacuum) transmission, thus paving the way for extensive uses of links in versatile polarization-based quantum information processing.
arXiv Detail & Related papers (2020-06-23T03:21:32Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.