論文の概要: Analyzing the Effect of Combined Degradations on Face Recognition
- arxiv url: http://arxiv.org/abs/2406.02142v1
- Date: Tue, 4 Jun 2024 09:29:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 17:01:41.477706
- Title: Analyzing the Effect of Combined Degradations on Face Recognition
- Title(参考訳): 複合劣化が顔認識に及ぼす影響の分析
- Authors: Erdi Sarıtaş, Hazım Kemal Ekenel,
- Abstract要約: 露光条件下で拡張した実世界の劣化パイプラインを用いて, 単一・複合劣化の影響を解析した。
その結果, 単一および複合劣化は異種モデル挙動を示すことが明らかとなった。
この研究は、実世界の環境における顔認識モデルの堅牢性を評価するために、実世界の複雑さを考慮に入れることの重要性を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A face recognition model is typically trained on large datasets of images that may be collected from controlled environments. This results in performance discrepancies when applied to real-world scenarios due to the domain gap between clean and in-the-wild images. Therefore, some researchers have investigated the robustness of these models by analyzing synthetic degradations. Yet, existing studies have mostly focused on single degradation factors, which may not fully capture the complexity of real-world degradations. This work addresses this problem by analyzing the impact of both single and combined degradations using a real-world degradation pipeline extended with under/over-exposure conditions. We use the LFW dataset for our experiments and assess the model's performance based on verification accuracy. Results reveal that single and combined degradations show dissimilar model behavior. The combined effect of degradation significantly lowers performance even if its single effect is negligible. This work emphasizes the importance of accounting for real-world complexity to assess the robustness of face recognition models in real-world settings. The code is publicly available at https://github.com/ThEnded32/AnalyzingCombinedDegradations.
- Abstract(参考訳): 顔認識モデルは一般的に、制御された環境から収集される可能性のある画像の大きなデータセットに基づいて訓練される。
これにより、クリーン画像とインザワイルド画像の領域ギャップによる実世界のシナリオに適用した場合のパフォーマンスの相違が生じる。
そのため, 合成劣化の解析により, これらのモデルの堅牢性を検討した研究者もいる。
しかし、既存の研究は主に1つの分解因子に焦点を当てており、これは現実世界の劣化の複雑さを完全に捉えていないかもしれない。
この研究は、露光条件下で拡張された実世界の劣化パイプラインを用いて、単一および複合的な劣化の影響を分析することにより、この問題に対処する。
実験にはLFWデータセットを使用し、検証精度に基づいてモデルの性能を評価する。
その結果, 単一および複合劣化は異種モデル挙動を示すことが明らかとなった。
劣化の複合効果は、その単一効果が無視可能であっても性能を著しく低下させる。
この研究は、実世界の環境における顔認識モデルの堅牢性を評価するために、実世界の複雑さを考慮に入れることの重要性を強調している。
コードはhttps://github.com/ThEnded32/AnalyzingCombinedDegradationsで公開されている。
関連論文リスト
- Towards Realistic Data Generation for Real-World Super-Resolution [58.88039242455039]
RealDGenは、現実世界の超解像のために設計された教師なし学習データ生成フレームワークである。
我々は,コンテンツ分解脱結合拡散モデルに統合されたコンテンツと劣化抽出戦略を開発する。
実験により、RealDGenは、現実世界の劣化を反映する大規模で高品質なペアデータを生成するのに優れていることが示された。
論文 参考訳(メタデータ) (2024-06-11T13:34:57Z) - RANRAC: Robust Neural Scene Representations via Random Ray Consensus [12.161889666145127]
RANRAC(RANdom RAy Consensus)は、一貫性のないデータの影響を排除するための効率的な手法である。
我々はRANSACパラダイムのファジィ適応を定式化し、大規模モデルへの適用を可能にした。
その結果, 新規な視点合成のための最先端のロバストな手法と比較して, 顕著な改善が見られた。
論文 参考訳(メタデータ) (2023-12-15T13:33:09Z) - Practical Insights of Repairing Model Problems on Image Classification [3.2932371462787513]
ディープラーニングモデルの追加トレーニングは、結果にネガティブな影響をもたらし、初期正のサンプルを負のサンプルに変える(劣化)。
本稿では, 劣化低減手法の比較から得られた影響について述べる。
その結果、実践者は、AIシステムのデータセットの可用性とライフサイクルを継続的に考慮し、より良い方法に気を配るべきであることが示唆された。
論文 参考訳(メタデータ) (2022-05-14T19:28:55Z) - Fair SA: Sensitivity Analysis for Fairness in Face Recognition [1.7149364927872013]
汎用フレームワークの形で頑健性に基づく新しい公正性評価を提案する。
我々は、一般的な顔認識モデルの性能を分析し、画像が摂動状態にある場合、ある種のサブグループが不利であることを実証的に示す。
論文 参考訳(メタデータ) (2022-02-08T01:16:09Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
ほとんどのデータセットは単純なサブプロブレムのみをキャプチャし、おそらくは突発的な特徴に悩まされる。
本研究では, 局所的な一般化特性である対向ロバスト性について検討し, 厳密でモデル固有な例と突発的な特徴を明らかにする。
他のアプリケーションとは異なり、摂動モデルは知覚できないという主観的な概念に基づいて設計されているため、摂動モデルは効率的かつ健全である。
驚くべきことに、そのような摂動によって、十分に表現力のあるニューラルソルバは、教師あり学習で共通する正確さと悪質さのトレードオフの限界に悩まされない。
論文 参考訳(メタデータ) (2021-10-21T07:28:11Z) - Robust Attentive Deep Neural Network for Exposing GAN-generated Faces [40.15016121723183]
本稿では,GAN生成した顔の視線不整合を解析して検出できる,頑健で注意深いエンドツーエンドネットワークを提案する。
我々は,AUCの損失と従来のクロスエントロピーの損失を共同で考慮し,不均衡な学習問題に対処する。
論文 参考訳(メタデータ) (2021-09-05T21:22:39Z) - Taxonomizing local versus global structure in neural network loss
landscapes [60.206524503782006]
ロスランドスケープが世界規模で良好に接続されている場合, 最適なテスト精度が得られることを示す。
また、モデルが小さい場合や、品質の低いデータに訓練された場合、世界規模で接続の不十分なランドスケープが生じる可能性があることも示しています。
論文 参考訳(メタデータ) (2021-07-23T13:37:14Z) - Contemplating real-world object classification [53.10151901863263]
Barbuらが最近提案したObjectNetデータセットを再分析した。
日常の状況に物を含むこと。
分離されたオブジェクトにディープモデルを適用すると、元の論文のようにシーン全体ではなく、約20~30%の性能改善が得られます。
論文 参考訳(メタデータ) (2021-03-08T23:29:59Z) - Real-world Person Re-Identification via Degradation Invariance Learning [111.86722193694462]
現実のシナリオにおける人物再識別(Re-ID)は通常、低解像度、弱い照明、ぼやけ、悪天候などの様々な劣化要因に悩まされる。
本稿では,現実世界のRe-IDを対象とした劣化不変学習フレームワークを提案する。
自己教師付き不整合表現学習戦略を導入することにより,個人性に関連する頑健な特徴を同時に抽出することができる。
論文 参考訳(メタデータ) (2020-04-10T07:58:50Z) - A Critical View of the Structural Causal Model [89.43277111586258]
相互作用を全く考慮せずに原因と効果を識別できることが示される。
本稿では,因果モデルの絡み合った構造を模倣する新たな逆行訓練法を提案する。
我々の多次元手法は, 合成および実世界の両方のデータセットにおいて, 文献的手法よりも優れている。
論文 参考訳(メタデータ) (2020-02-23T22:52:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。