Almost linear time differentially private release of synthetic graphs
- URL: http://arxiv.org/abs/2406.02156v1
- Date: Tue, 4 Jun 2024 09:44:24 GMT
- Title: Almost linear time differentially private release of synthetic graphs
- Authors: Jingcheng Liu, Jalaj Upadhyay, Zongrui Zou,
- Abstract summary: In this paper, we give almost linear time and space algorithms to sample from an exponential mechanism.
As a direct result, we define a differential input an $n$m edges exponentially large $G$
These are privatefirst private algorithms for releasing synthetic graphs.
- Score: 6.076406622352115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we give an almost linear time and space algorithms to sample from an exponential mechanism with an $\ell_1$-score function defined over an exponentially large non-convex set. As a direct result, on input an $n$ vertex $m$ edges graph $G$, we present the \textit{first} $\widetilde{O}(m)$ time and $O(m)$ space algorithms for differentially privately outputting an $n$ vertex $O(m)$ edges synthetic graph that approximates all the cuts and the spectrum of $G$. These are the \emph{first} private algorithms for releasing synthetic graphs that nearly match this task's time and space complexity in the non-private setting while achieving the same (or better) utility as the previous works in the more practical sparse regime. Additionally, our algorithms can be extended to private graph analysis under continual observation.
Related papers
- Faster Private Minimum Spanning Trees [11.72102598708538]
We present a new differentially private MST algorithm that matches the utility of existing in-place methods while running in time.
We present a data structure that allows us to sample a noisy minimum weight edge among at most $O(n2)$ cut edges in $O(sqrtn log n)$ time.
arXiv Detail & Related papers (2024-08-13T16:00:30Z) - Graph Unfolding and Sampling for Transitory Video Summarization via Gershgorin Disc Alignment [48.137527345353625]
User-generated videos (UGVs) uploaded from mobile phones to social media sites like YouTube and TikTok are short and non-repetitive.
We summarize a transitory UGV into several discs in linear time via fast graph sampling based on Gershgorin disc alignment (GDA)
We show that our algorithm achieves comparable or better video summarization performance compared to state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2024-08-03T20:08:02Z) - Online Learning with Feedback Graphs: The True Shape of Regret [82.00098840619847]
We prove that the minimax regret is proportional to $R*$ for any graph and time horizon $T$.
Introducing an intricate exploration strategy, we define the mainAlgorithm algorithm that achieves the minimax optimal regret bound.
arXiv Detail & Related papers (2023-06-05T15:35:00Z) - On the Unlikelihood of D-Separation [69.62839677485087]
We provide analytic evidence that on large graphs, d-separation is a rare phenomenon, even when guaranteed to exist.
For the PC Algorithm, while it is known that its worst-case guarantees fail on non-sparse graphs, we show that the same is true for the average case.
For UniformSGS, while it is known that the running time is exponential for existing edges, we show that in the average case, that is the expected running time for most non-existing edges as well.
arXiv Detail & Related papers (2023-03-10T00:11:18Z) - Correlation Clustering Algorithm for Dynamic Complete Signed Graphs: An
Index-based Approach [9.13755431537592]
In this paper, we reduce the complexity of approximating the correlation clustering problem from $O(mtimesleft( 2+ alpha (G) right)+n)$ to $O(m+n)$ for any given value of $varepsilon$ for a complete signed graph.
Our approach gives the same output as the original algorithm and makes it possible to implement the algorithm in a full dynamic setting.
arXiv Detail & Related papers (2023-01-01T10:57:36Z) - Fast Computation of Generalized Eigenvectors for Manifold Graph
Embedding [38.902986549367434]
We leverage existing fast extreme eigenvector computation algorithms for speedy execution.
Our embedding is among the fastest in the literature, while producing the best clustering performance for manifold graphs.
arXiv Detail & Related papers (2021-12-15T03:45:39Z) - Finding the KT partition of a weighted graph in near-linear time [1.572727650614088]
Kawarabayashi and Thorup gave a near-trivial time deterministic algorithm for minimum cut in a simple graph $G = (V,E)$.
We give a near-linear time randomized algorithm to find the $(1+varepsilon)$-KT partition of a weighted graph.
arXiv Detail & Related papers (2021-11-02T05:26:10Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
We study the problem of efficiently summarizing a short video into several paragraphs, leveraging recent progress in fast graph sampling.
Experimental results show that our algorithm achieves comparable video summarization as state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2021-10-21T18:43:00Z) - Sublinear Time and Space Algorithms for Correlation Clustering via
Sparse-Dense Decompositions [9.29659220237395]
We present a new approach for solving (minimum disagreement) correlation clustering.
We obtain sublinear algorithms with highly efficient time and space complexity.
The main ingredient of our approach is a novel connection to sparse-dense graph decompositions.
arXiv Detail & Related papers (2021-09-29T16:25:02Z) - Private Stochastic Convex Optimization: Optimal Rates in $\ell_1$
Geometry [69.24618367447101]
Up to logarithmic factors the optimal excess population loss of any $(varepsilon,delta)$-differently private is $sqrtlog(d)/n + sqrtd/varepsilon n.$
We show that when the loss functions satisfy additional smoothness assumptions, the excess loss is upper bounded (up to logarithmic factors) by $sqrtlog(d)/n + (log(d)/varepsilon n)2/3.
arXiv Detail & Related papers (2021-03-02T06:53:44Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.