Differentially Private Synthetic Graphs Preserving Triangle-Motif Cuts
- URL: http://arxiv.org/abs/2507.14835v1
- Date: Sun, 20 Jul 2025 06:20:53 GMT
- Title: Differentially Private Synthetic Graphs Preserving Triangle-Motif Cuts
- Authors: Pan Peng, Hangyu Xu,
- Abstract summary: We study the problem of releasing a differentially private (DP) synthetic graph $G'$ that well approximates the triangle-motif sizes of all cuts of any given graph $G'$.<n>Non-private versions of such graphs have found applications in diverse fields such as graph clustering, graph sparsification, and social network analysis.
- Score: 5.893124686141782
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study the problem of releasing a differentially private (DP) synthetic graph $G'$ that well approximates the triangle-motif sizes of all cuts of any given graph $G$, where a motif in general refers to a frequently occurring subgraph within complex networks. Non-private versions of such graphs have found applications in diverse fields such as graph clustering, graph sparsification, and social network analysis. Specifically, we present the first $(\varepsilon,\delta)$-DP mechanism that, given an input graph $G$ with $n$ vertices, $m$ edges and local sensitivity of triangles $\ell_{3}(G)$, generates a synthetic graph $G'$ in polynomial time, approximating the triangle-motif sizes of all cuts $(S,V\setminus S)$ of the input graph $G$ up to an additive error of $\tilde{O}(\sqrt{m\ell_{3}(G)}n/\varepsilon^{3/2})$. Additionally, we provide a lower bound of $\Omega(\sqrt{mn}\ell_{3}(G)/\varepsilon)$ on the additive error for any DP algorithm that answers the triangle-motif size queries of all $(S,T)$-cut of $G$. Finally, our algorithm generalizes to weighted graphs, and our lower bound extends to any $K_h$-motif cut for any constant $h\geq 2$.
Related papers
- Graph Unfolding and Sampling for Transitory Video Summarization via Gershgorin Disc Alignment [48.137527345353625]
User-generated videos (UGVs) uploaded from mobile phones to social media sites like YouTube and TikTok are short and non-repetitive.
We summarize a transitory UGV into several discs in linear time via fast graph sampling based on Gershgorin disc alignment (GDA)
We show that our algorithm achieves comparable or better video summarization performance compared to state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2024-08-03T20:08:02Z) - Almost linear time differentially private release of synthetic graphs [6.076406622352115]
In this paper, we give almost linear time and space algorithms to sample from an exponential mechanism.
As a direct result, we define a differential input an $n$m edges exponentially large $G$
These are privatefirst private algorithms for releasing synthetic graphs.
arXiv Detail & Related papers (2024-06-04T09:44:24Z) - Complexity of graph-state preparation by Clifford circuits [2.4032529562561176]
We consider general quantum algorithms acting on at most two qubits for graph-state preparations.<n>We show a connection between the CZ-complexity of graph state $|Grangle$ and the rank-width of the graph $G$.<n>We present quantum algorithms for preparing graph states for three specific graph classes related to intervals: interval graphs, interval containment graphs, and circle graphs.
arXiv Detail & Related papers (2024-02-08T18:08:09Z) - Online Learning with Feedback Graphs: The True Shape of Regret [82.00098840619847]
We prove that the minimax regret is proportional to $R*$ for any graph and time horizon $T$.
Introducing an intricate exploration strategy, we define the mainAlgorithm algorithm that achieves the minimax optimal regret bound.
arXiv Detail & Related papers (2023-06-05T15:35:00Z) - Detection of Dense Subhypergraphs by Low-Degree Polynomials [72.4451045270967]
Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem.
We consider detecting the presence of a planted $Gr(ngamma, n-alpha)$ subhypergraph in a $Gr(n, n-beta) hypergraph.
Our results are already new in the graph case $r=2$, as we consider the subtle log-density regime where hardness based on average-case reductions is not known.
arXiv Detail & Related papers (2023-04-17T10:38:08Z) - (1,1)-Cluster Editing is Polynomial-time Solvable [0.0]
Abu-Khzam introduced the $(a,d)$- Editing problem, where for fixed natural numbers $a,d$, given a graph $G and affirmative-weights $a*: V(G)rightarrow 0,1,dots, a and $d*: V(G)rightarrow 0,1,dots, a and $d*: V(G)rightarrow 0,1,dots, a and $d*: V(
arXiv Detail & Related papers (2022-10-14T11:40:34Z) - Efficient Signed Graph Sampling via Balancing & Gershgorin Disc Perfect
Alignment [51.74913666829224]
We show that for datasets with strong inherent anti-correlations, a suitable graph contains both positive and negative edge weights.
We propose a linear-time signed graph sampling method centered on the concept of balanced signed graphs.
Experimental results show that our signed graph sampling method outperformed existing fast sampling schemes noticeably on various datasets.
arXiv Detail & Related papers (2022-08-18T09:19:01Z) - Near-Linear Time and Fixed-Parameter Tractable Algorithms for Tensor
Decompositions [51.19236668224547]
We study low rank approximation of tensors, focusing on the tensor train and Tucker decompositions.
For tensor train decomposition, we give a bicriteria $(1 + eps)$-approximation algorithm with a small bicriteria rank and $O(q cdot nnz(A))$ running time.
In addition, we extend our algorithm to tensor networks with arbitrary graphs.
arXiv Detail & Related papers (2022-07-15T11:55:09Z) - Beyond the Berry Phase: Extrinsic Geometry of Quantum States [77.34726150561087]
We show how all properties of a quantum manifold of states are fully described by a gauge-invariant Bargmann.
We show how our results have immediate applications to the modern theory of polarization.
arXiv Detail & Related papers (2022-05-30T18:01:34Z) - Random Graph Matching in Geometric Models: the Case of Complete Graphs [21.689343447798677]
This paper studies the problem of matching two complete graphs with edge weights correlated through latent geometries.
We derive an approximate maximum likelihood estimator, which provably achieves, with high probability, perfect recovery of $pi*$.
As a side discovery, we show that the celebrated spectral algorithm of [Ume88] emerges as a further approximation to the maximum likelihood in the geometric model.
arXiv Detail & Related papers (2022-02-22T04:14:45Z) - Fast Graph Sampling for Short Video Summarization using Gershgorin Disc
Alignment [52.577757919003844]
We study the problem of efficiently summarizing a short video into several paragraphs, leveraging recent progress in fast graph sampling.
Experimental results show that our algorithm achieves comparable video summarization as state-of-the-art methods, at a substantially reduced complexity.
arXiv Detail & Related papers (2021-10-21T18:43:00Z) - Exact Matching of Random Graphs with Constant Correlation [2.578242050187029]
This paper deals with the problem of graph matching or network alignment for ErdHos--R'enyi graphs.
It can be viewed as a noisy average-case version of the graph isomorphism problem.
arXiv Detail & Related papers (2021-10-11T05:07:50Z) - Accelerated Gradient Tracking over Time-varying Graphs for Decentralized Optimization [59.65871549878937]
We prove that the practical single loop accelerated gradient tracking needs $O(fracgamma1-sigma_gamma)2sqrtfracLepsilon)$.<n>Our convergence rates improve significantly over the ones of $O(frac1epsilon5/7)$ and $O(fracLmu)5/7frac1 (1-sigma)1.5logfrac1epsilon)$.
arXiv Detail & Related papers (2021-04-06T15:34:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.