論文の概要: Pairwise Ranking Loss for Multi-Task Learning in Recommender Systems
- arxiv url: http://arxiv.org/abs/2406.02163v2
- Date: Wed, 05 Jun 2024 05:17:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-10 23:05:20.256337
- Title: Pairwise Ranking Loss for Multi-Task Learning in Recommender Systems
- Title(参考訳): リコメンダシステムにおけるマルチタスク学習におけるペアワイズランキングの損失
- Authors: Furkan Durmus, Hasan Saribas, Said Aldemir, Junyan Yang, Hakan Cevikalp,
- Abstract要約: オンライン広告システムでは、Click-Through Rate (CTR) や Conversion Rate (CVR) といったタスクが同時に MTL 問題として扱われることが多い。
本研究では,変換に対応する露光ラベルを決定指標とみなす。
モデル予測間でのtextbfairtextbfwise textbf ranking(PWiseR)損失を計算し、タスク固有の損失を新たに導入する。
- 参考スコア(独自算出の注目度): 8.824514065551865
- License:
- Abstract: Multi-Task Learning (MTL) plays a crucial role in real-world advertising applications such as recommender systems, aiming to achieve robust representations while minimizing resource consumption. MTL endeavors to simultaneously optimize multiple tasks to construct a unified model serving diverse objectives. In online advertising systems, tasks like Click-Through Rate (CTR) and Conversion Rate (CVR) are often treated as MTL problems concurrently. However, it has been overlooked that a conversion ($y_{cvr}=1$) necessitates a preceding click ($y_{ctr}=1$). In other words, while certain CTR tasks are associated with corresponding conversions, others lack such associations. Moreover, the likelihood of noise is significantly higher in CTR tasks where conversions do not occur compared to those where they do, and existing methods lack the ability to differentiate between these two scenarios. In this study, exposure labels corresponding to conversions are regarded as definitive indicators, and a novel task-specific loss is introduced by calculating a \textbf{p}air\textbf{wise} \textbf{r}anking (PWiseR) loss between model predictions, manifesting as pairwise ranking loss, to encourage the model to rely more on them. To demonstrate the effect of the proposed loss function, experiments were conducted on different MTL and Single-Task Learning (STL) models using four distinct public MTL datasets, namely Alibaba FR, NL, US, and CCP, along with a proprietary industrial dataset. The results indicate that our proposed loss function outperforms the BCE loss function in most cases in terms of the AUC metric.
- Abstract(参考訳): マルチタスク学習(MTL)は,資源消費を最小限に抑えつつ,ロバストな表現を実現することを目的として,レコメンダシステムなどの現実的な広告アプリケーションにおいて重要な役割を担っている。
MTLは複数のタスクを同時に最適化し、多様な目的を達成する統一モデルを構築する。
オンライン広告システムでは、Click-Through Rate (CTR) や Conversion Rate (CVR) といったタスクが同時に MTL 問題として扱われることが多い。
しかし、変換(y_{cvr}=1$)が前回のクリック(y_{ctr}=1$)を必要とすることは見過ごされている。
言い換えれば、あるCTRタスクは対応する変換と関連付けられるが、他のタスクはそのような関連を欠いている。
さらに、変換が起こらないCTRタスクではノイズの可能性が著しく高く、既存の手法ではこれらの2つのシナリオを区別する能力が欠如している。
本研究では、変換に対応する露光ラベルを決定的指標とみなし、モデル予測間での \textbf{p}air\textbf{wise} \textbf{r}anking (PWiseR) の損失を計算して、モデルにもっと依存するよう促すことにより、新しいタスク固有の損失をもたらす。
提案した損失関数の効果を実証するために, Alibaba FR, NL, US, CCPの4つの公共MTLデータセットと, 独自の産業データセットを用いて, 異なるMTLおよびシングルタスク学習(STL)モデルを用いて実験を行った。
以上の結果から,提案した損失関数はAUC測定値においてBCE損失関数よりも優れていたことが示唆された。
関連論文リスト
- MTLComb: multi-task learning combining regression and classification tasks for joint feature selection [3.708475728683911]
マルチタスク学習(Multi-task learning、MTL)は、複数の通信アルゴリズムの同時学習を可能にする学習パラダイムである。
本稿では、回帰と分類タスクのバランスをとるための最適な重み付けを解析的に決定する、証明可能な損失重み付け手法を提案する。
MTLアルゴリズムとソフトウェアパッケージであるMTLCombを導入し、最適化手順、トレーニングプロトコル、ハイパーパラメータ推定手順を紹介する。
論文 参考訳(メタデータ) (2024-05-16T08:07:25Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML)は、複数の事前学習モデルを活用することで、独自のトレーニングデータを必要とせずに、新しいタスクを効率的に学習することを目的としている。
TDS(Task-Distribution Shift)とTDC(Task-Distribution Corruption)の2つの大きな課題を初めて明らかにした。
論文 参考訳(メタデータ) (2023-11-23T15:46:54Z) - AdaMerging: Adaptive Model Merging for Multi-Task Learning [68.75885518081357]
本稿では,Adaptive Model Merging (AdaMerging)と呼ばれる革新的な手法を紹介する。
本来のトレーニングデータに頼ることなく、タスクレベルでも階層的にも、モデルマージの係数を自律的に学習することを目指している。
AdaMergingは、現在の最先端のタスク演算のマージ方式と比較すると、パフォーマンスが11%向上している。
論文 参考訳(メタデータ) (2023-10-04T04:26:33Z) - Low-Rank Multitask Learning based on Tensorized SVMs and LSSVMs [65.42104819071444]
マルチタスク学習(MTL)はタスク関連性を活用して性能を向上させる。
タスクインデックスに対応する各モードを持つ高次テンソルを用いて、複数のインデックスが参照するタスクを自然に表現する。
テンソル化サポートベクターマシン(SVM)と最小2乗サポートベクターマシン(LSSVM)を併用した低ランクMTL手法の汎用フレームワークを提案する。
論文 参考訳(メタデータ) (2023-08-30T14:28:26Z) - Feature Decomposition for Reducing Negative Transfer: A Novel Multi-task
Learning Method for Recommender System [35.165907482126464]
特徴分解ネットワーク(FDN)と呼ばれる新しいマルチタスク学習手法を提案する。
提案するFDNの鍵となる考え方は,特徴をタスク固有機能とタスク共有機能に明示的に分解することで,特徴冗長性の現象を小さくすることである。
実験結果から,提案するFDN法は最先端(SOTA)法よりも顕著なマージンで優れていることがわかった。
論文 参考訳(メタデータ) (2023-02-10T03:08:37Z) - Multi-Task Recommendations with Reinforcement Learning [20.587553899753903]
マルチタスク学習(MTL)は、Recommender System(RS)アプリケーションで大きな成功を収めた。
本稿では,動的重みを用いた推薦タスクの損失を組み合わせ,強化学習(RL)強化MTLフレームワークであるRMTLを提案する。
2つの実世界の公開データセットの実験は、最先端のMTLベースのレコメンデーションモデルに対する高いAUCによるRMTLの有効性を示す。
論文 参考訳(メタデータ) (2023-02-07T09:11:17Z) - "It's a Match!" -- A Benchmark of Task Affinity Scores for Joint
Learning [74.14961250042629]
MTL(Multi-Task Learning)は、その成功の条件を特徴づけることが、ディープラーニングにおいて依然としてオープンな問題である、と約束する。
共同学習におけるタスク親和性の推定は重要な取り組みである。
最近の研究は、訓練条件自体がMTLの結果に重大な影響を与えることを示唆している。
しかし,本研究では,タスク親和性評価手法の有効性を評価するためのベンチマークが欠落している。
論文 参考訳(メタデータ) (2023-01-07T15:16:35Z) - Mitigating Negative Transfer in Multi-Task Learning with Exponential
Moving Average Loss Weighting Strategies [0.981328290471248]
MTL(Multi-Task Learning)は、ディープラーニングへの関心が高まっている分野である。
特定のタスクがトレーニングを支配し、他のタスクのパフォーマンスを損なう可能性があるため、MTLは実用的ではない。
指数移動平均によるスケーリングに基づく損失分散手法を提案する。
論文 参考訳(メタデータ) (2022-11-22T09:22:48Z) - Multi-Task Learning as a Bargaining Game [63.49888996291245]
マルチタスク学習(MTL)では、複数のタスクを同時に予測するためにジョイントモデルを訓練する。
これらの異なるタスクの勾配が矛盾する可能性があるため、MTLのジョイントモデルを訓練すると、対応するシングルタスクモデルよりも低いパフォーマンスが得られる。
本稿では,パラメータ更新のジョイント方向で合意に達するためのタスクを交渉する交渉ゲームとして,勾配の組み合わせステップを考察する。
論文 参考訳(メタデータ) (2022-02-02T13:21:53Z) - Cross-Task Consistency Learning Framework for Multi-Task Learning [9.991706230252708]
2タスクMTL問題に対する新しい学習フレームワークを提案する。
サイクル一貫性損失とコントラスト学習に着想を得た2つの新たな損失項を定義する。
理論的には、どちらの損失もモデルをより効率的に学習する助けとなり、直進予測と整合する点において、クロスタスクの整合性損失がより良いことを証明している。
論文 参考訳(メタデータ) (2021-11-28T11:55:19Z) - Towards Accurate Knowledge Transfer via Target-awareness Representation
Disentanglement [56.40587594647692]
本稿では,TRED(Target-Awareness Representation Disentanglement)の概念を取り入れた新しいトランスファー学習アルゴリズムを提案する。
TREDは、対象のタスクに関する関連する知識を元のソースモデルから切り離し、ターゲットモデルを微調整する際、レギュレータとして使用する。
各種実世界のデータセットを用いた実験により,本手法は標準微調整を平均2%以上安定的に改善することが示された。
論文 参考訳(メタデータ) (2020-10-16T17:45:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。